Skip to main content
Log in

Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr−1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and −10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr−1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr−1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr−1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr−1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr−1 and the 19±2.5 mm yr−1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for Earth science applications. J Geophys Res – Solid Earth 107(B10):2214 DOI:10.1029/2001JB000561

    Article  Google Scholar 

  • Argus DF, Gordon RG (1991) No-net-rotation model of current plate velocities incorporating plate motion model nuvel-1. Geophys Res Lett 18(11):2039–2042 DOI: 10.1029/91GL01532

    Google Scholar 

  • Avouac JP (2003) Mountain building, erosion and the seismic cycle in the Nepal Himalaya. In: Dmowska R (eds). Advances in geophysics 46. Elsevier, Amsterdam, pp 1–80 DOI:10.1016/S0065-2687(03)46001-9

    Google Scholar 

  • Avouac JP, Bollinger L, Lavé J, Cattin R, Flouzat M (2001) Le cycle sismique en Himalaya. C. R. Acad Sci 333:513–529

    Google Scholar 

  • Banerjee P, Burgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29(13) art. no.-1652, DOI:10.1029/2002GL015184

  • Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS), An interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–653

    Article  Google Scholar 

  • Beutler, G, Bock H, Brockmann E, Dach R, Fridez P, Gurtner W, Hugentobler U, Ineichen D, Johnson J, Meindl M, Mervart L, Rothacher M, Schaer S, Springer T, Weber R (2001) Bernese GPS Software, Version 4.2. Astronomical Institute, University of Berne, Berne

    Google Scholar 

  • Beutler G, Drewes H, Verdun A (2005) The Integrated Global Geodetic Observing System (IGGOS) viewed from the perspective of history. J Geodyn 40(4–5):414–431 DOI: 10.1016/j.jog.2005.06.005

    Article  Google Scholar 

  • Bilham R, Larson K, Freymueller J, Jouanne F, LeFort P, Leturmy P, Mugnier JL, Gamond JF, Glot JP, Martinod J, Chaudury NL, Chitrakar GR, Gautam UP, Koirala BP, Pandey MR, Ranabhat R, Sapkota SN, Shrestha PL, Thakuri MC, Timilsina UR, Tiwari DR, Vidal G, Vigny C, Galy A, deVoogd B (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386(6620):61–64 DOI: 10.1038/386061a0

    Article  Google Scholar 

  • Bilham R, Blume F, Bendick R, Gaur VK (1998) Geodetic constraints on the translation and deformation of India: Implications for future great Himalayan earthquakes. Curr Sci 74(3):213–229

    Google Scholar 

  • Blewitt G, Bock Y, Kouba J (1995) Constructing the IGS polyhedron by distributed processing. In Proc. of the IGS Workshop ed. By J. Zumberge, IGS Central Bureau, Pasadena, pp 31–36

  • Bollinger L, Avouac JP, Cattin R, Pandey MR (2004) Stress buildup in the Himalaya. J Geophys Res 109(B11):B11405 DOI: 10.129/2003JB002911

    Article  Google Scholar 

  • Boucher C, Altamimi Z, Sillard P (1999) The 1997 International Terrestrial Reference Frame (ITRF97). IERS Techn. Note 27, Paris Observatory

  • Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The International Terrestrial Reference Frame (ITRF2000). IERS Tech Note 31 Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105(B6):13389–13407 DOI: 10.1029/2000JB900032

    Article  Google Scholar 

  • Chen Z, Burchfiel BC, Liu Y, King RW, Royden LH, Tang W, Wang E, Zhao J, Zhang X (2000) Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J Geophys Res 105:16215–16227 DOI: 10.1029/2000JB900092

    Article  Google Scholar 

  • Chen QZ, Freymueller JT, Wang Q, Yang ZQ, Xu CJ, Liu JN (2004) A deforming block model for the present-day tectonics of Tibet. J Geophys Res 109(B1):art. no.-B01403, DOI:10.1029/2002JB002151

  • Cohen SC (1999) Numerical models of crustal deformation in seismic zones. Adv Geophys (41):133–231

    Article  Google Scholar 

  • Crétaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Dong D, Herring TA, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geod 72(4):200–214

    Article  Google Scholar 

  • Flouzat M, Avouac JP, Durette B, Bollinger L, Heritier T, Jouanne F, Pandey M (2002) Interseismic deformation across the Himalaya of Central Nepal from GPS measurements. EOS Trans AGU 83(47) Fall Meet Suppl F366

  • Flück P, Hyndman RD, Wang K (1997) Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone. J Geophys Res 102(B9):20539–20550

    Article  Google Scholar 

  • Gahalaut VK, Chander R (1997) On interseismic elevation changes and strain accumulation for great thrust earthquakes in the Nepal Himalaya. Geophys Res Lett 24:1011–1014

    Article  Google Scholar 

  • Hauck ML, Nelson D, Brown LD, Zhao W, Ross AR (1998) Crustal structure of the Himalayan orogen at 90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 17:481–500

    Article  Google Scholar 

  • Holt WE, Chamot-Rooke N, Le Pichon X, Haines AJ, Shen-Tu B, Ren J (2000) Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J Geophys Res 105:19185– 19209 DOI: 10.1029/2000JB900045

    Article  Google Scholar 

  • Jackson M., Bilham R (1994) Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J Geophys Res 99(B7):13897–13912

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Pandey M, Gamond JF, Le Fort P, Serrurier P, Vigny C, Avouac JP, IDYL-HIM members. (1999) Oblique convergence in Himalaya of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26(13):1933–1936

    Google Scholar 

  • Jouanne F, Mugnier JL, Gamond JF, Le Fort P, Pandey MR, Bollinger L, Flouzat M, Avouac JP (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157(1):1–14 DOI: 10.1111/j.1365-246X.2004.02180.x

    Article  Google Scholar 

  • Kreemer C, Haines J, Holt WE, Blewitt G, Lavalee D (2000) On the determination of a global strain rate model. Earth Planets Space 52:765–770

    Google Scholar 

  • Kumar S, Wesnousky SG, Rockwell TK, Ragona D, Thakur VC, Seitz GG (2001) Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science 294(5550):2328–2331

    Article  PubMed  Google Scholar 

  • Larson K, Bürgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. J Geophys Res 104(B1):1077–1093

    Article  Google Scholar 

  • Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105(B3):5735–5770

    Article  Google Scholar 

  • Lavé J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake (approximate to 1100 AD) in the Central Himalayas, Nepal. Science 307(5713):1302–1305 DOI:10.1126/science.1104804

    Article  PubMed  Google Scholar 

  • Melbourne WG (1985) The case for ranging in gps based geodetic system. In: Proceedings of the 1st international symposium on precise positioning with the global positioning system, Clyde Goad (ed), pp 373–386

  • Mervart L (1995) Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 53 Schweizerische Geodätische Kommission Institut für Geodäsie und Photogrammetrie Eidg. Technische Hochschule Zürich

  • Molnar P, Pandey MR (1989) Rupture zones of great earthquakes of the Himalayan region. Indian Acad Sci (Earth and Planetary Science) 98(1):61–70

    Google Scholar 

  • Nelson KD, Zhao WJ, Brown LD, Kuo J, Che JK, Liu XW, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen LS, Tan HD, Wei WB, Jones AG, Booker J, Unsworth M, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu CD, Sandvol E, Edwards M (1996) Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science 274(5293):1684–1688

    Article  PubMed  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile fault in a half space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Paul J, Bürgmann R, Gaur VK, Bilham R, Larson KM, Ananda MB, Jade S, Mukal M, Anupama TS, Satyal G, Kumar D (2001) The motion and active deformation of India. Geophys Res Lett 28:647–650 DOI: 10.1029/2000GL011832

    Article  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP, Lave J, Massot JP (1995) Interseismic Strain Accumulation on the Himalayan Crustal Ramp (Nepal). Geophys Res Lett 22(7):751–754

    Article  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP, Vergne J, Héritier T (1999) Seismotectonics of Nepal himalayas from a local seismic network. J Asian Earth Sci 17(5–6):703–712

    Article  Google Scholar 

  • Perfettini H, Avouac JP (2004) Stress transfer and strain rate variations during the seismic cycle. J Geophys Res 109(B2):B02304 DOI: 10.1029/2003JB002917

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes, The Art of Scientific Computing. (Second Edition). Cambridge University Press, Cambridge ISBN 0-521-43108-5

    Google Scholar 

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solutions 8(4):251–266 DOI: 10.1007/s10291-004-0110-x

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R, Wu F. (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435 (7046):1222–1225 DOI: 10.1038/nature03678

    Article  PubMed  Google Scholar 

  • Sella GF, Dixon TH, Mao AL (2002) REVEL: A model for recent plate velocities from space geodesy. J Geophys Res 107(B4), DOI: 10.1029/2000JB000033

  • Shen ZK, Zhao C, Yin A, Li Y, Jackson DD, Fang P, Dong D (2000) Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J Geophys Res 105(B3):5721–5734

    Article  Google Scholar 

  • Singh SJ, Rani S (1993) Crustal deformation associated with two-dimensional thrust faulting. J Phys Earth 41(2):87–101

    Google Scholar 

  • Sillard P, Altamimi Z, Boucher C (1998) The ITRF96 realization and its associated velocity field. Geophys Res Lett 25(17):3223–3226

    Article  Google Scholar 

  • Socquet A (2003) Accommodation du mouvement relatif entre l’Inde et la Sonde: depuis la Faille de Sagaing jusqu’à la Syntaxe Est Himalayenne. Thèse de doctorat de l’Université Paris XI, 195 pp

  • Soudarin L, Cretaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505 DOI: 10.1126/science.1099192

    Article  PubMed  Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341 DOI:10.1016/j.asr.2005.03.102

    Article  Google Scholar 

  • Vergne J, Cattin R, Avouac JP (2001) On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys J Int 147(1):155–162

    Article  Google Scholar 

  • Webb F, Zumberge J Eds. (1995) An introduction to the GIPSY/OASIS II, Report JPLM D-11088, Jet Propulsion Laboratory, Pasadena

  • Wessel P, Smith WHF (2001) The generic mapping tools (GMT) version 3.4 technical reference & cookbook. School of Ocean and Earth Science and Technology/National Oceanic and Atmospheric Administration (SOEST/NOAA)

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prwirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B3):B03412 DOI: 10.1029/2003JB002741

    Article  Google Scholar 

  • Willis P, Heflin M (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616 DOI: 10.1029/2004GL020038

    Article  Google Scholar 

  • Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000; methods and realization. J Geod 79(6–7):370–378 DOI: 10.1007/s00190-005-0475-9

    Article  Google Scholar 

  • Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geoscience 336(9):839–846 DOI:10.1016/j.crte.2004.01.004

    Google Scholar 

  • Willis P, Berthias JP, Bar-Sever YE (2006) Systematic errors in the Z-geocenter derived using satellite tracking data: A case study from SPOT-4 DORIS data in 1998. J Geod 79(10–11):567–572 DOI:10.1007/s00190-005-0013-9

    Article  Google Scholar 

  • Willis P, Boucher C, Fagard H, Altamimi Z (2005b) applications of the DORIS system at the French Institut Geographique National. CR Geoscience 337(7):653–662 DOI:10.1016/j.crte.2005.03.002

    Google Scholar 

  • Wubbena G (1985) Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements. In: Proceedings of the 1st international symposium on precise positioning with the global positioning system, Clyde Goad (ed), pp 403–412

  • Yoshioka S, Mikumo T, Kostoglodov V, Larson KM, Lowry AR, Singh S (2004) Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion. Phys Earth Planetary Interiors 146(3–4):513–530 DOI: 10.1016/j.pepi.2004.05.006

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Genrich JF, Williams S, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(18):035-18 055, DOI: 10.1029/97JB01380

    Google Scholar 

  • Zhao W, Nelson KD, project INDEPTH Team (1993) Deep seismic-reflection evidence continental underthrusting beneath southern Tibet. Nature 366(6455):557–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bettinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettinelli, P., Avouac, JP., Flouzat, M. et al. Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. J Geodesy 80, 567–589 (2006). https://doi.org/10.1007/s00190-006-0030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0030-3

Keywords

Navigation