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ARTICLE INFO ABSTRACT

Available online 7 August 2011 It is often suggested that any group selection model can be recast in terms of inclusive fitness.
A standard reference to support that claim is “‘Quantitative genetics, inclusive fitness, and group
selection” by Queller (1992) in the American Naturalist 139 (3), 540-558. In that paper the Price
equation is used for the derivation of this claim. Instead of a general derivation, we try out a simple
model. For this simple example, we find that the result does not hold. The non-equivalence of group
selection and kin selection is therefore not only an important finding in itself, but also a case where the
use of the Price equation leads to a claim that is not correct.

If results that are arrived at with the Price equation are not correct, they can typically be repaired by
adding extra assumptions, or explicitly stating implicit ones. We give examples with relatively mild and
with less mild extra assumptions. We also discuss why the Price equation is often referred to as

Keywords:

Group selection

Inclusive fitness

The Price equation
Price’s theorem
Dynamical (in)sufficiency

dynamically insufficient, and we try to find out what Price’s theorem could be.
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The Dude: This is a very complicated case, Maude. You know,
a lotta ins, lotta outs, lotta what-have-yous. A lotta strands to
keep in my head, man. Lotta strands in old Duder’s head.

The Big Lebowski

1. Introduction

George R. Price produced two of the most influential papers
about the evolution of cooperation in the last 50 years. One of
them, written together with Maynard Smith (Maynard Smith and
Price, 1973) is about why conflicts between animals do typically
not escalate. In order to be able to predict which strategies for
conflict will evolve, it introduces the notion of an evolutionarily
stable strategy (ESS). This has become the central concept in
evolutionary game theory, together with the replicator dynamics
that was introduced by Taylor and Jonker (1978). There is no doubt
that evolutionary game theory in general and the idea of an ESS in
particular has been essential for understanding the evolution of
cooperation. In models with mutation and selection, the ESS is the
most natural refinement of a Nash equilibrium, and to formulate a
model and look for evolutionarily stable strategies has become a
standard approach.
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The other paper—this one single authored—introduces what is
now known as the Price equation (Price, 1970). This paper has also
been very influential, and the equation is regularly described as
giving a simple, but very deep insight into the fundamentals of
population genetics (see for instance Frank, 1995; Grafen, 2002;
Gardner, 2008). Countless papers have been written using the Price
equation, and its fame as the equation that describes the evolution
of altruism has given WAz = cov(w,z) in biology something of the
appeal that E=mc? has in physics. This appeal is enhanced by
Price’s remarkable life story, and his equation has therefore become
the nucleus of the biography by Harman (2010), where scientific
thinking about the evolution of selflessness in general, all the way
from Fisher, Haldane and Wright to Maynard Smith and Hamilton,
culminates in the discovery of Price’s equation.

There is a difference, though. While the ESS is undisputed as
a tool for modelling, the Price equation is not, and nor are the
results that are arrived at with it. Especially in the debate
about the value of inclusive fitness (Nowak et al., 2010; Gardner
et al, 2011) and the relation between group selection and
inclusive fitness (Queller, 1992; Sober and Wilson, 1998; Wilson
and Wilson, 2007; Traulsen and Nowak, 2006; Lehmann et al,,
2007; Killingback et al., 2006; Grafen, 2007a; Van Veelen, 2009,
2011a,b; Wild et al., 2009; Wade et al., 2010; Marshall, 2011a,b)
results that are derived with the Price equation are contested. In
Van Veelen et al. (2010) we claim that the disagreement about
these results is partly caused by the use of the Price equation. If we
ignore the abuse of the word covariance, then the Price equation
is an identity, and can therefore not be wrong. Its typical use
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however confuses probability theory and statistics, as well as
identity and causality.

If the Price equation indeed is not a proper tool for doing
statistics, nor for making models or deriving predictions, as
claimed in Van Veelen (2005), then there are a lot of questions
that arise concerning the large literature in which the Price
equation is used. Has using the Price equation ever lead to
incorrect claims? If the Price equation is bad statistics, then what
would good statistics be? Does that imply that these results are
all wrong? Is there such a thing as Price’s theorem? And why is it
called dynamically insufficient? In this paper we will try to
address these issues. The different sections in this paper are
therefore somewhat loosely connected, as they answer different
questions concerning the Price equation and the literature using
it. The central part however concerns the question whether or not
using the Price equation has ever lead to incorrect results.

Queller (1992) is regularly referred to as support for the widely
held belief that models of group selection and inclusive fitness are
equivalent (see for instance Okasha, 2010). The paper uses the
Price equation to show that both group selection models and
inclusive fitness work for the same reasons if they do, and fail for
the same reasons if they do not. In Section 3 we will go through
all steps of the argument, not with the Price equation, but with an
extremely simple example. It turns out that none of the steps of
the argument is correct already for a very simple set of models. If
the claim is not correct for one example, then it surely cannot be
correct in general. This particular result, arrived at with the Price
equation, therefore, turns out to be wrong.

Section 4 describes the relation between the Price equation
and the statistics literature.

Section 5 looks at the issue of dynamic sufficiency. We argue
that the fact that the Price equation is regularly described as
limited by dynamic insufficiency is really a symptom of the real
problem with the Price equation. An identity itself cannot be
dynamically sufficient or insufficient. Models can. We claim that
the lack of rigour concerning what the numbers are that go into
the Price equation can induce people using it to make implicit
assumptions that amount to dynamically insufficient models.

The literature mentions not only the Price equation, but also
Price’s theorem and Price’s rule. While the Price equation can be
traced back to Price’s work (1970, 1972), this is not true for Price’s
theorem or Price’s rule. Section 6 discusses what Price’s theorem
could be.

Of course not all results arrived at with the Price equation are
wrong—even if the Price equation does not provide a proper
proof. In Section 7 we therefore look at the scope for repair of
results “derived” with the Price equation. For some results one
can simply write down a proper proof without the Price equation.
For other results it turns out that we need to make some extra
assumptions to repair the result. This indicates that using the
Price equation induces assumptions being swept under the
carpet. Rederiving results without the Price equation then forces
one to get them back from under there.

2. The Price equation

What can go wrong when the Price equation is used for the
derivation of a theoretical result can best be explained with the
words of a famous Dutch football player. When he was once asked
what you should do in order to win a game, Johan Cruijff replied
that you should score [at least] one more goal that your opponent.
This of course is a funny reply (although it is not sure if it was
actually meant as such) because it is both indisputably correct as
well as completely useless. It is quite possible that it was Cruijff’s
way of saying that the question was rather unspecific and broad,

but then again, it is equally possible that Cruijff himself actually
thought that he had stumbled upon a deep truth. It is also
possible that what he really meant to say is “don’t play too
defensive; you can concede a goal and still win the game”. What
is important for the analogy with the Price equation is that it is
certainly not an answer to the question as the journalist meant it;
he or she expected an answer like “play 4-3-3” or “train less” or
“don’t play too defensive”, preferably with an explanation of why
that would be the key to winning a game. Johan Cruijff's answer
just rephrased what it is to win, and did not suggest how to do it.
Still it was correct as any answer can be. But it is not an answer
that is of too much use.

Price formulated his equation well before Cruijff formulated
this particular footballogism. But even though he cannot possibly
be inspired by Cruijff, Price’s famous equation and Cruijff’s
(locally) famous answer share the same basic logic, although
with the Price equation this is much harder to see. The Price
equation does not concern what happens in a football game, but it
is about what happens between two subsequent generations. The
numbers that it uses are the genetic compositions of the two
generations. Van Veelen (2005) goes into more detail here, but
what is most important is that we realize that the numerical input
of the Price equation is a list of numbers. It is a list that concerns
two generations, and which tracks who is whose offspring. But
whatever it reflects, it is crucial to realize that the point of
departure is nothing but a list of numbers. This list of numbers
is used twice. First we use it to compute the frequencies of the
gene under consideration in generations 1 and 2, respectively, and
subtract the latter from the former. This amounts to the change in
gene frequency. Then we use the same list to compute a few
other, slightly more complex quantities. The essence of the Price
equation is that these quantities also add up to the change in gene
frequency. One way of computing the change in frequency there-
fore can be rewritten as the other and vice versa. What they are,
therefore, is nothing but two equivalent ways to compute the
change in gene frequency, given a list of numbers concerning
genes in two subsequent generations (see Fig. 1).

What is important to realize, is that this equivalence is
tautological. Therefore it is true whatever the numbers are that
are on the list. Whether this particular second generation is likely
to follow the first or not, the two ways of computing the change in
frequency return the same number. Had the list of numbers been

A list of numbers

Left hand side = Right hand side

Fig. 1. In its most simple form, the list contains (1) per individual in the parent
population the dose of a gene, (2) the same for individuals in the offspring
generation, and (3) who in the offspring population got which gene from which
parent. The simple way to compute the change in gene frequency (left hand side)
is just to calculate the gene frequency in the parent population, calculate the gene
frequency in the offspring population, and subtract the latter from the former. The
right hand side is much more complex, but nonetheless it is the same change in
gene frequency that follows from the list of numbers being what it is; see Box 1,
Van Veelen (2005) and www.evolutionandgames.com/price for details. Less
simple forms of the Price equation exist, but they are not fundamentally different.
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different, then everything, on both sides of the equation, would
have been different. While the Price equation tautologically holds
for any thinkable transition from one generation to the other, real
models should be informative about whether or not such a
transition is likely to occur, or, more precisely, whether one
transition is relatively likely compared to other transitions.

In football, we are interested in whether or not we are likely to
win a game. In biology, we want to know what the chances are
that the gene frequency goes up. Cruijff's statement basically
amounts to “a game is won if a game is won”. That is true, but it is
not particularly useful; we want to know what determines the
odds of winning. Price’s statement has the same form; “the gene

precisely: “the change in gene frequency is the change in gene
frequency”. This is also as true as can be, but again not very
useful. The reason that this is harder to see, is that the right hand
side of the Price equation has a shape that suggests that there is
more to this equality than there really is. It has a covariance-like
term in it and a few other terms that look like—but really are
not—terms that are used in statistics. This has lead many into
temptation to think that the one side of the equation (the one that
looks simple and obviously is the change in gene frequency) is
explained by the other (the one that contains a covariance-like
term, but that, although that is harder to see, really is nothing but
the very same change in gene frequency). Something along those
lines could have been correct if there would be a real covariance

frequency goes up if the gene frequency goes up”. Or, more

Box 1

If we restrict ourselves to population states with one and the same population size, and assume a haploid species which reproduces
asexually, we get an extremely simple version of the Price equation. For all transitions, we have the following identity, in which N is
the population size, g;is the genotypic value of individual i, and z; is the number of offspring in the second generation of individual i
from the first generation. This makes > ;q; the sum of genotypic values in the parent generation, ) _;z;q; the sum of genotypic values in
the offspring generation, and with the observation that >";z; = N because of the constant population size, the simple version of the
Price equation follows (see also www.evolutionandgames.com/pricefor an interactive tutorial with this and other, less simple versions
of the Price equation).

sa=[F0- (R (R0)] 0

The right hand side looks like a covariance, but it is very important to realize that it is not. A covariance is a property of a joint
distribution of two random variables. The right hand side here is not that; it is a function of numbers, or variables. If the numbers g;
and z; are random variables, then the right hand side is also a random variable - and not a covariance. The properties of this random
variable can be derived if we know the properties of g;and z;. Alternatively, if the numbers are data (realizations of random variables),
then the right hand side is the sample covariance. This can certainly play a role in statistics as an estimate of the true covariance, but
the Price equation does not add anything to what the statistics literature offers here; AQ = ““sample covariance” does not add anything
to our knowledge of the bias of this estimate, nor does it help us see how it should be used for statistical tests.

Maybe the most unfortunate thing about the Price equation is that the term on the right hand side is denoted as a covariance, even
though it is not. The equation thereby turns into something that can easily set us off in the wrong direction, because it now resembles
equations as they feature in other sciences, where probabilistic models are used that do use actual covariances. A correct treatment
with an actual covariance in it would then be as follows. Suppose we are in a certain population state. For that population state we can
assume a probability distribution over all possible transitions, and any probability distribution implies a covariance between genotype
and number of offspring. This covariance is a number, it reflects the properties of the chance experiment in which a new generation is
produced from the current state, and we can leave this number in there as a variable; Cov(z, q). In this simple setting we can show that
whatever the value of the true covariance is,

E[AQ] = Cov(z,q) (i)

where E[AQ] is the expected change in gene frequency, and Cov(z, q) is the true, assumed covariance. When we do statistics, and the
numbers are data, then the idea is that we do not know the true value of Cov(z,q), in which case the sample covariance can be a good
estimate, depending on the number of observations. Note, however, that this is not what the Price equation does.

If we interpret z; and g; as random variables, then (ii) follows from (i) if we take expectations on both sides of the equation, since
E['sample covariance’] = Cov(z,q)." One could then also say that by replacing the right hand side of (i) by Cov(z,q), but not taking an
expectation on the left hand side, Eq. (i) is turned into a meaningless equation, with a random variable on the one, and a number on
the other side.

"To be perfectly precise, the sample covariance is defined as

5 () ()

For N independent draws of (z;, g;)-pairs from a joint distribution with a given covariance Cov(z,q), the expected value of the sample covariance would be equal to
Cov(z,q). Here however we do not have Nindependent draws of (z;, q;)-pairs, because (1) the g/s are not really random, as they together simply make up a given parent
population, and (2) the fixed population requires that };z; = N. What we do have is therefore N independent draws of individuals for the next generation, given a parent
population q=(qn,...,qn), which makes z=(z,...,zy) a vector of N random variables that are not independent. In such a setting, one can add a hypothetical chance
experiment: draw a parent, with each parent equally likely to be drawn (here, that is: the probability of parent j being drawn is 1/N). Now let zand g be the random
variables that are defined as z; and g; if parent j is drawn. These random variables have a properly defined covariance—Cov(z,q)—and one can easily show that the
expected value, for a given q, of

not multiplied by N/(N—1), equals Cov(z,q). Summarized, that is

E[AQ] = E {% - (lezf) (%)} — Cov(z,q)

which is Eq. (ii). See also www.evolutionandgames.com/price. With large N the difference between the two disappears, as N/(N—1) goes to 1.
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instead of a covariance-like term. A real covariance would be a
given part of an actual model, which determines the odds for a
generation 2 to follow a given generation 1. Then the change in
gene frequency would be a random variable, the properties of
which are determined by a given covariance. But the covariance-
term in the right hand side of the Price equation is not given. It is
a number that varies with the original list of numbers, just as
much as the left hand side does. So neither side of the Price
equation follows from the other, nor is either side explained by
the other (see Box 1).

What the proper thing to do is depends on what the numbers
are, and on what type of question we want to answer. If we want to
do modelling, then we can assume a probabilistic model, and see
what different assumptions at a disaggregate level will imply for
expected (changes in) population measures such as gene fre-
quency. Note that this is not what the Price equation does; it just
gives two equivalent ways of computing the change in frequency.
If, on the other hand, we want to do empirical research—in which
case the list of numbers must be actual data—then we should use
the data in the list to estimate parameters of an actual model and
use them to perform statistical tests. Again, this is not what the
Price equation does. (Why the Price equation does not help
answering either type of questions is explained in detail in Van
Veelen, 2005. This can also be explored on www.evolutionand
games.com/price. This low-threshold interactive guide draws tran-
sitions (lists of numbers) from different distributions on demand,
and indicates how probability theory and how statistics would deal
with those. It also indicates how the Price equation literature deals
with them. Also Section 4 compares the Price equation literature to
the standard statistics literature).

The fact that the Price equation is not useful as a formal tool
for deriving results does not mean that it is useless in general.
Writing changes in gene frequencies in the two ways in which the
Price equation writes them can be perfectly useful, but more in
the sense that it can inspire us. The right hand side of the
equation—which can differ in shape, depending on the setting
we think of—can help us think what reasonable assumptions at a
disaggregate (individual) level could be. These assumptions can
then be formulated in mathematical terms, and from them we
can, preferably in a theorem-proof form, derive perhaps at first
not obvious implications at the aggregate (population) level. But
in order for such a result to actually be shown to follow from
those assumptions, we need a proper theorem with a proper
proof. It is nothing but basic logic that only results that are, or
that can be, stated in a theory-proof form should be considered to
hold. Quite a few results that are claimed to follow from a Price
equation approach may actually survive this check, in the sense
that they can be formulated and properly proven without refer-
ence to the Price equation. But some do not, which underscores
the importance of actual proofs, rather than “derivations with” or
“expansions of” the Price equation.

3. Group selection and kin selection

Queller (1992) compares inclusive fitness models and group
selection models using the Price equation. This paper is regularly
referred to in order to support the claim that group selection models
and inclusive fitness are equivalent, and recently it is also used to
interpret experimental results (see for instance Chuang et al., 2010).
The claim of the paper is that both group selection models and
inclusive fitness work for the same reasons if they do, and fail for the
same reasons if they do not. The results can be summarized very
shortly as follows (see Fig. 2). If there is non-additivity in the fitness
effects—reflecting for instance synergies—then that makes the
separation condition fail. This separation condition is a condition

A group selection
/ decomposition is possible
The ‘separation

The game is additive €= condition’ is satisfied

A kin selection
decomposition is possible

Fig. 2. This summarizes the argument in Queller (1992). Together, these equiv-
alences would imply that a group selection decomposition is possible if, and only
if, a kin selection decomposition is possible. However, the example shows that
none of the three implications above hold, already for a very simple set of models.
Whether or not the game is additive depends on parameter d. Whether or not the
separation condition is satisfied depends on parameters r, b and P. A group
selection decomposition is always possible, a kin selection decomposition only if
d = 0. Also the overall statement is therefore not correct; additivity of the game is
required for the kin selection decomposition to be possible, but not for the group
selection decomposition.

that allows for the separation that inclusive fitness makes as well as
for the separation that group selection makes. Therefore, if the one
separation works, then the other works too, and vice versa. This
result is regularly described as proof that group selection and kin
selection are equivalent (see for instance Okasha, 2010) or, more
precisely, that any group selection model can be recast in terms of
inclusive fitness (while it is never invoked to claim that also every
inclusive fitness model can be recast as a group selection model).

One reason to re-examine this result is that Van Veelen (2009,
2011a,b) looks at a simple set of group selection models, and
shows that inclusive fitness gives the correct prediction only for a
well-defined strict subset of this set of models. That seems at
odds with the result from Queller (1992) result, which suggests
that inclusive fitness would give the correct prediction for all
group selection models. The results in Van Veelen (2009) were
therefore called into question in Marshall (2011a)—see also Van
Veelen (2011a) for a response—and the same argument was
repeated in Marshall (2011b) and Gardner et al. (2011). Similar
debates are Lehmann et al. (2007) reacting to Traulsen and Nowak
(2006) and Grafen (2007b) reacting to Killingback et al. (2006),
and also Wild et al. (2009) and Nowak et al. (2010) express
opposing views on the reach of inclusive fitness. It therefore
seems worthwhile to see what causes these discrepancies and try
to find out if it could be that it is the Price equation that sends us
barking up the wrong tree.

The core of Queller (1992) is a general claim, arrived at with the
Price equation. In order to explore the validity of the general claim,
it can be worthwhile to look at a very simple model, and try to see
whether or not the claims in Queller actually are true for the
simple example. After all, if the claim holds in general, then it
should also hold for that simple example. This turns out not to be
the case. Fig. 2 depicts Queller's argument, which has a few
equivalences in it. All chains in the argument turn out not to be
correct. First, for the simple example, whether or not fitness effects
are additive turns out not to bear on whether or not his separation
condition is satisfied. It is possible that Queller’s (1992) separation
condition holds, while fitnesses are not additive, and that it does
not hold, even if fitnesses are additive. In turn, whether or not
Queller’s (1992) separation condition is satisfied has no implica-
tions for whether or not the decompositions made by inclusive
fitness and group selection are possible. An inclusive fitness
separation may be possible, while Queller’s separation condition
is not satisfied, and not possible, even if the condition is satisfied,
while a group selection separation is always possible. And not only
are the different chains in the argument incorrect, also the overall
statement is not true for our example. The separation made by
inclusive fitness turns out to be possible if fitnesses are additive,
while the group selection separation is always possible. The simple
example therefore also shows that the two do not, as claimed,
work or fail for the same reasons.
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Because the group selection/inclusive fitness debate is con-
troversial, we should emphasize that this should not be taken as
an argument in favour of, or against, either group selection theory
or inclusive fitness. It is only a check on the claim whether or not
separations are possible, and makes no claim whatsoever about
how helpful either separation is.

Also, it should be noted that there are models that are not
group selection models, but for which inclusive fitness can give
the correct prediction. One example is Grafen (2007a), who
reanalysed results on the cycle from Ohtsuki and Nowak (2006),
and concluded that there an inclusive fitness approach also leads
to the correct prediction. Lion et al. (2011) also argue that there
are models that are not group selection models, where an
inclusive fitness approach gives the correct prediction.

3.1. The simple example

3.1.1. The dynamics

For the simple example, it is relatively easy to use the
replicator dynamics, as defined in Van Veelen (2011b) for n-player
games and population structure. This is a perfectly regular,
ordinary model (or set of models). It is also relatively easy to
work with, because it is deterministic. The shortest way to write
this generalized replicator dynamics is as follows:

p=p(1-p)[Tc—Tp] (M

where 7 and Tp are the average payoffs of C-players and D-
players, respectively, incorporating population structure. In con-
tinuous time, p is the equivalent of AG.

The replicator dynamics has a great attraction. Because it
assumes an infinite population setting in which the population
shares evolve deterministically, there is no actual uncertainty in
the dynamics of the population shares of the strategies. This
implies that many subtleties and possible sources for confusion
concerning covariances and sample covariances disappear (see
also Section 7.5).

3.1.2. The population structure

The population structure is defined by frequencies of different
types of groups. Groups can be composed of 0 cooperators and n
defectors, 1 cooperator and n—1 defectors, and so on, and a
population state will be characterized by the frequencies of those
different types of groups. They are denoted by f;,i =0, ...,n, where
fi is the frequency of groups with i cooperators and n—i defectors
in it. In order for f = (fo, ... ,fn) to be a consistent population state,
these frequencies have to satisfy the following conditions;
O0<fi<1foralliand I_,fi=1. Also, obviously, the frequency
of cooperators in the population as a whole is given by p=(1/n)

Xioifi

3.1.3. The game

In Van Veelen (2011a), the payoffs are denoted by
nepi=1,...,n and np;i=0,...,n—1, which are the payoffs to a
cooperator, resp. defector, if there are in total i cooperators in a
group. For the simple example, we will use a payoff matrix from
Queller’s (1985).2

C D
C b—c+d -c
D b 0

In other words, we take mcq=—-c, ncy=b—c+d, mpo=0 and
Tip1 = b.

2 Section 7.3 and Appendix C discuss the distinction between payoffs and
fitness effects. Here the matrix entries are payoffs.

The replicator dynamics can also deal with entries in the
payoff matrix that are frequency dependent (see Taylor and
Jonker, 1978, in which the replicator dynamics are presented in
a much more general form than they are normally used. Van
Veelen (2009) also allows for ¢ and b to be frequency dependent,
and see also Van Veelen, 2011a,b, and Appendix C). Here we make
a counterexample, which implies that if an example with payoffs
that are not frequency dependent contradicts the result, examples
with frequency dependence will not change that.

3.1.4. Genotype and phenotype

We will, for simplicity, assume throughout that phenotype and
genotype are binary; P,G e {0,1}. In Sections 3.3.1-3.3.3 we will
assume that phenotype and genotype are the same. In Section 3.4
we will assume that having the cooperative genotype only
implies a certain probability of expressing it; P(P=1)=P-G.
That is, if your genotype is 0, then your phenotype will be zero
too, but if your genotype is 1, then your phenotype is 1 with
probability P and 0 with probability 1—P, with 0 <P < 1. This
makes it a very simple, relatively tractable model for which we
can explore whether or not Queller’s general statements, derived
with the Price equation, hold.

3.2. Claims and results

For the simple example it is shown that the separation
condition is satisfied if r=0, b=0, P=0 or P=1, while the
separation condition is not satisfied at frequencies p e (0,1) if
r>0, b>0, and 0 <P < 1. On the other hand, if we look at the
possibility of decomposing fitness, then it turns out that the
relevant condition for the inclusive fitness decomposition is that
d=0, while a group selection decomposition, as described in
Queller (1992), is always possible. Again, how useful such a
decomposition is, is a matter of debate. The important point
however is that it is always possible, whether or not d =0. This
clearly contradicts the claim in Queller (1992), as all of the
parameters that determine whether the separation condition
holds turn out to be irrelevant for the actual decompositions.
Also the overall claim is contradicted; sometimes a group selec-
tion decomposition is, and a kin selection decomposition is not
possible.

In order to ease our way into the model, we start with the case
where phenotype and genotype are the same, or, in other words,
where P=1. This implies that the separation condition from
Queller (1992) is satisfied. For this case we will compare the
possibilities of the two ways of decomposing fitness. Then we will
move on to the more general case with 0 <P < 1, summarize the
separation condition for this model, and look again at the two
ways of decomposing fitness. This is followed by a discussion of
the separation condition and what that implies for this model.
This discussion is perhaps the most difficult to follow, but it is
also the most important, because it relates the good intuition that
is behind it to standard, but rigorous statistics.

A lot of the work is actually rather dull algebra, so the sections
below will all refer to appendices where all kinds of variances,
covariances and conditions are computed.

3.3. Phenotype=genotype

3.3.1. Inclusive fitness

In order to achieve the inclusive fitness decomposition, we
follow the section “Inclusive Fitness” from Queller (1992), and
apply it to the replicator dynamics example. We will use a natural
correspondence for n=2 between relatedness and frequency on
the one hand and frequencies of different types of groups on the
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other (see Bergstrom, 2003, or Section 3.3 of Van Veelen, 2011b);
if we take fo(p) = (1-1)(1-p)*+r(1-p), fi(p) = (1-1)2p (1-p) and
fr(p)=(1-r)p*+rp, then r can naturally be interpreted as
relatedness.

If we combine the payoff matrix from Queller (1985)* with this
population structure in the generalized replicator dynamics, we
get the following dynamics (see Van Veelen, 2011a,b)

p=p(-p)rb—c+(r+(1-r)p)d] 2)

With the translation provided in Van Veelen (2011a), this is
equivalent to Eq. (2) in Queller (1985), assuming that genotype
and phenotype are the same, and for d=0 to Eq. (16) in Queller
(1992), again assuming that genotype and phenotype are
the same.

As Marshall (2011a) and Queller (1985) already pointed out,
this is not Hamilton’s rule if d# 0, and therefore it is better to
refer to it as Queller’s rule. If indeed d # 0, then this prevents the
separation of fitness effects and population structure. If d=0, then
we have equal gains from switching—or additive fitness
effects—and the separation is possible.

In order to visualize the separation, which is possible if d=0,
we can write what the formula implies if we assume that d is
indeed 0;
p>0<sr> % 3)
Here we have population structure on the one hand of the
inequality sign (r) and fitness effects on the other (b/c). Van
Veelen (2011a) shows that inclusive fitness is only a meaningful
concept if it means that it allows for such a separation of
population structure and fitness effects. Van Veelen (2011b)
shows that such a separation is only possible for d=0.

3.3.2. Group selection

In order to achieve the most natural separation of between-
group selection and within-group selection, we will follow the
section “Group Selection” from Queller (1992) and apply his
recipe to the same example.

At first there seems to be a problem with the application of the
Price equation to our particular replicator dynamics. The equa-
tion, as formulated by Price (1970), assumes that we know who in
the next generation is whose offspring. This is not specified in the
(generalized) replicator dynamics. What we can do, however, is
start by simply computing the first term in the separation
suggested in Queller (1992), which is the (so-called) covariance
between the average phenotype in the group and average fitness
(note that phenotype and genotype still are the same here). Once
we have the first term, this implies that the other term must be
the remainder. It turns out that this gives a perfectly reasonable
separation of the effects of between-group and within-group
selection.

The more detailed derivation, as well as a suggestion of the
more general version, are in Appendix A. The separation we arrive
at there is

between group selection within group selection

. b b
p=p(-p) |5 4n i a-npd| -pi-p "3 1-n)]

4)
The first term on the right hand side, including the p(1—p), is the
Cov(Gg,Wg) from Queller (1992) (see Queller, 1992, p. 548, and the
derivation in Appendix A). It is also clear that (2) and (4) are
equivalent.

3 Section 7.3 and Appendix C discuss the distinction between payoffs and
fitness effects. Here the matrix entries are payoffs.

This is what we get when we apply the group selection
separation from Queller (1992) to this simple example. It also
makes perfect sense as a separation of the two effects, because (1)
b—c is the (baseline) efficiency gain to a group of cooperating, and
hence should feature in the between group term, (2) d is the
bonus in uniform cooperative groups, and hence should only
feature in the between-group selection term, (3) b+c is how
much the cooperators in mixed groups put themselves at a
disadvantage relative to the defectors, hence should feature in
the within-group selection term, and (4) a high r increases the
between-group selection term, and decreases the within-group
selection term.

Again we can visualize this particular separation:

between group selection within group selection

p>0< ?(1+r)+[r+(l—r)p]d] > {?(14)} €)

This separation is also perfectly consistent with the simple
summary of how group selection works in Wilson and Wilson
(2007, p. 345).

3.3.3. Do these separations work or fail for the same reasons?

If we look at the first separation—the inclusive fitness one as
reflected in (3)—then we see that it is possible for d=0 (or, more
general, under generalized equal gains from switching; see Van
Veelen, 2009, 2011b) and not possible for d # 0. So it is possible if
fitness effects are additive, and not possible if they are not.

If we look at the second separation—the group selection one as
reflected in (4)—then it is first of all worth observing that both
terms actually depend on population structure as well as fitness
effects. In that sense they both are compound terms. This implies
that perhaps this decomposition may be of limited use. But the
more important observation here is that the value of d has no
effect whatsoever on the possibility of this separation. Whether d
equals 0 or not, it is always possible to separate the total effect in
a between-group term and a within-group term. This also gen-
eralizes to groups larger than 2. Hence, contrary to the claim in
Queller (1992, p. 555), non-additive fitness effects do not prevent
us to separate the total effect into a between- and a within-group
effect.

3.4. What if phenotype and genotype are not necessarily the same?

Now suppose that having a gene for cooperation only implies
that, independent of the group composition, it is expressed (that
is, it leads to cooperative behaviour) with probability P. The kin
selection decomposition then becomes (see Appendix B.1)

p=Pp(1—p)(rb—c+(r+(1-r)p)Pd) (6)

Again, this is not Hamilton’s rule if d # 0, and therefore it is better
to refer to it as a version of Queller’s rule. If indeed d # 0, then this
prevents the separation of fitness effects and population struc-
ture. If d=0, then we have equal gains from switching, and the
separation is possible. Note that if d # 0, then P not only matters
for the speed of selection, but also for what the fixed point of this
dynamics is.

In order to visualize the separation, which is possible if d=0,
we can assume that d is indeed 0 and write an implication of the
formula as:

p>0<=r1> % 7
Of course it is only possible to separate population structure
(reflected by the r) from the payoffs or fitness effects (reflected by
byifd 0.

C
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The group selection decomposition becomes (see Appendix
B.3):

between group selection within group selection

p=rp-p) [P+ a-rppd | -ppci—p) [P Ca-n]
®)
Again, we can visualize this particular separation:
between group selection within group selection
—~
p>0<= {?(l+r)+[r+(l—r)p]Pd} > {?(1—0} 9

Again, the formulas show that P has an effect on the speed as well
as the direction of selection.

These two ways to decompose the change in frequency still
imply that whatever was said about separation for the case where
phenotype and genotype are equal, still applies here; one cannot
say that these separations work or fail for the same reasons.

Because the link between the two decompositions was sup-
posed to run through Queller’s separation condition, it is also
interesting to look at how this condition relates to these separa-
tions. The separation condition (see Section 3.5) is satisfied for our
example if r=0, orif b=0, or if P=0 or P = 1, while the separation
condition is not satisfied if r>0, b>0 and 0 <P < 1. The actual
separations for our example above however show that all possi-
bilities and impossibilities of separation do not depend on the
values of r,b and P.

3.5. The separation condition

Queller (1992) uses the Price equation, and a familiar problem
with the use of the Price equation is that it is not always clear
whether this equation is meant to answer a question concerning
a (probabilistic) model, or a statistical question. The mix-up
between probability theory and statistics is a returning problem
in the Price equation literature (Van Veelen, 2005; Van Veelen
et al., 2010, see also www.evolutionandgames.com/price, and this
paper is no exception. On page 543 we find the following
equation (Eq. (3) in Queller, 1992):

G:OC(;-I—ﬁcpp-i-SG (10)

where P is the phenotypic value and where o and fp are the
intercept and slope of the best-fit regression equation. The &¢’s are
residuals, which may differ for each individual and which
describe the difference between breeding value predicted by the
regression and the actual breeding value.

The right hand side of this equation is then used to replace G in
Eq. (1) in Queller (1992)—AG = Cov(G,W)—after which we arrive
at Eq. (4) in Queller (1992)

AG = Cov(oig, W)+ BcpCov(P,W)+Cov(eg, W) an

The separation condition is then that Cov(eg,W) = 0.

The first thing to notice is that the presence of a best-fit
regression equation and residuals, inevitably implies that data
have been used to arrive at those og, fcp and &.% The first two
then are estimates of some true values, assuming that the relation
between genotype and phenotype is indeed a linear one as
suggested by Eq. (10). In a modelling context, on the other hand,
best-fit regressions and residuals are out of place; if we are only
modelling, we know all parameters, and we do not need any best-
fit regression equation, nor are there residuals (note that residuals

4 In statistics it is common practice to distinguish between the true value and
the estimate, for instance by denoting the true values by o and fgp and the
estimates by ¢ and fp or agc and bgp. Here the o and fp are described as the
estimates, which is a bit unfortunate given standard statistical notation.

and disturbances are not the same!) This implies that the only
setting in which Eq. (10) and its description makes sense is one in
which we have been using data in order to do statistics.

Yet everything else in the paper is about modelling; the papers
central message concerns properties of different models, which
are compared to each other. As such, it is natural that the paper is
not at all about standard statistical concerns, such as biases of
estimates or hypothesis testing (which are the standard things to
look at in statistics). Given these two mutually exclusive ingre-
dients, it is not clear what Eq. (11) is supposed to be. Is it an
equation that does statistics, and concerns data? Or is it an
equation that describes properties of a model? It is in any case
not fully consistent with either option.

Also the separation condition itself does not have a consistent
interpretation. On the one hand, & is the result of a combination
of an estimation procedure (OLS, which is short for ordinary least
squares) and data. The W on the other hand belongs to a model,
the properties of which we want to describe, but that have
nothing to do with data. As such, it is not a well-defined
condition, because it is not clear whether it is a condition that a
model has to satisfy, or if it is a restriction that the data have to
satisfy.

That however does not mean that we cannot distill what the
underlying intuition could be and see if we can describe a
consistent version of the condition that Cov(eg,W) =0, or at least
find out what it would imply for our simple example. There are
actually two routes along which we can find an answer to the
question what it would imply for our simple example. Fortunately
both routes lead to the same answer.

3.5.1. Route 1

Suppose that indeed, as in our example, phenotype and
genotype are binary—P,Ge {0,1}. Suppose furthermore that
indeed P(P=1)=P-G, that is, if the genotype is 0, then the
phenotype will be 0 too, and if the genotype is 1, then the
phenotype is 1 with probability P and O with probability 1-P,
0 <P < 1. Suppose furthermore that we do not know the actual
value of P, and that we would like to estimate it
statistically—which implies that the numbers are data. A very
simple and accurate procedure would be to count all instances
where P=1 and G=1 (under the assumption of the model, G=1 is
redundant) and divide it by all instances where G=1. This is
equivalent to the solution of the least square regression of P on G.
Note that here we will follow the statistical convention and let ap
and fp; denote the true values and &p and fp; their estimates.

P:OCP+,BPGG+EP 12)
With this OLS regression we get

~ Sample covariance (G,P) _ P-PG _ P

Bec= Sample variance (G)  G-GG G a3

which is exactly what the straightforward method gave us. The
expected value of this estimator is E[fpc] = E[P/G] = P. This is also
what we find when we use
Cov(G,P) p(1-pP
Var(G) — p(l-p)

Furthermore &p = P—fp:G and

[E[EPG] = P

p(1-p)P
p(1-p)

The regression in Queller goes in the other direction (this is
Eq. (10) above).

Efotp] = pP— p=0

G= O(G+,BGPP+£G
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With this OLS regression we get

Sample covariance(G,P)

Ber= Sample variance(P) (14)
for which
E[EGP]: Cov(G,P) _ p(1-p)P _ 1-p
Var(P) pP(1-pP) 1-pP
Furthermore
Gc=G—BpP and [E[dp] = —%pP: %

The expected value of both estimators is now frequency
dependent.

This regression, although the wrong way round if we want to
find out from the data how phenotype depends on genotype
(which is how the actual causality runs) can nonetheless be given
a meaningful interpretation. If we take the expected values of &g
and fB¢p and fill them in the equation—and if we have many
observations, we are relatively confident that the estimators will
be close to those values—then o+ ficpP gives us the expected
value of G given P. If P=1, then

p—pP 1;13 1=1

1-pP  1-pP

which is obviously the expected genotype if P=1, because
P =1,G=0 never occurs. If P=0, then

oc+PepP =

p—pP
%+ PerP=T_"pp
while Bayes rule gives us the same answer
. o PG=1P=0)  p(-P) __p-pP
PG=1|P=0)= PP=0) ~ 1-p+p(1-P)  1—pP

This is the expected genotype conditional on P =0, because G and
P are binary variables.

Therefore, if we are curious what the expected value of the
genotype is, conditional on the phenotype, then this regression
can be seen as informative. If new data are generated from the
same data generating process, but now the genotype is not
observed, then this gives the right conditional probabilities.

One might however be able to do a better job at estimating the
chances that a data point is G=0 or G=1 if these new data also
include fitnesses. In the extreme case with r=1 (and n=2), having
the gene but not expressing it leads to a payoff of b with
probability P (the probability with which the other, who has it
too because r=1, expresses it) or of 0 with probability 1-P. Not
having the gene always leads to a payoff of 0, so in this extreme
setting a payoff of b implies that G=1 with certainty, and not with
probability &¢c. In other words, in this case there is extra
information to be extracted from the fitnesses.

More generally, we can look at the following covariance.
Suppose that we know p and P, and that we take the expected
values of o and Bp again, that is, we take og = (p—pP)/(1—pP)
and fcp=(1—-p)/(1—pP). Then we can look at the disturbances
that result from filling in the data in the equation G =g+
PBcpP+¢c. In other words, define the disturbances as ¢c = G—oc—
BepP with o = (p—pP)/(1-pP) and B¢p = (1-p)/(1-pP).

Now we can compute a proper covariance (this is done in
Appendix (B.5))

Cov(eg,W) = FlecW]—[E[ec]E[W]
_ tbp(1-p)P(1-P)
- 1—pP

It is clear that this Cov(¢g,W)=0 forall pif r=0, b=0, P=0 or

P=1, while Cov(eg,W)>0 for O<p<1 if r>0b>0 and
0<P<1.

(15)

This also implies that the appropriately constructed sample
covariance between &; and W—where ¢ now are actual residuals,
using the estimates & and fp instead of the true values o and
Pcp, and not the true disturbance terms—will converge in prob-
ability to a non-zero limit for the number of observations going to
infinity. So with a large enough sample, one could detect a non-
zero covariance with high confidence.

If this condition is satisfied, then it means that no information
about the value of G can be extracted from the value of W, after
we have used the value of P. If this condition is not satisfied, there
is information left to extract from W.

3.5.2. Route 2

There is also a second way to arrive at what the separation
condition in Queller (1992) must imply for our simple example.
The section “The separation condition” in Queller (1992) also
states that, given that the separation condition is satisfied,
Egs. (5) and (8) in Queller (1992) are equivalent. Eq. (5) is
AG = BcpCov(P,W) and Eq. (8) is AG = f,pCov(G,P). The reason
why they should be equivalent is that S, is defined as
Pcp = Cov(G,P)/Var(P) while f, is defined as Cov(P,W)/Var(P).
This equivalence can therefore be summarized with the state-
ment that

Cov(G,P)Cov(P,W)

AG= Var(P)

(16)
When we compute all terms in this equation (as is done at the
bottom of (B.2)) we find that this is only true if r=0, b=0,P=0
or P=1, while it is not true if r >0, b>0 and 0 <P < 1, which is
exactly what the separation condition implies for our example if
we follow Route 1. This confirms our interpretation of the
separation condition, because Egs. (5) and (8) in Queller (1992)
are only claimed to be equivalent if the separation condition is
satisfied.

3.6. Group selection and inclusive fitness are not always equivalent

Queller (1992, p. 541) summarizes his results as follows.

- inclusive fitness and group selection [---] achieve their
simplicity in the same way: the separation of fitness para-
meters from genetic parameters. As a result, the models
succeed and fail in ways that pertain to quantitative genetics
models in general. Moreover, inclusive fitness models and
group selection models are extremely similar to each other.
Their only fundamental difference is in how they choose to
decompose fitness. Other differences are trivial matters of the
form of presentation. The two models work for the same
reason, and they fail (to be exact) under the same condition.

The condition is specified at the end of the paper (p. 555)

Both fail when non-additive fitness raise the level of complex-
ity beyond what can accurately be described by the two pairs
of parameters. [- - -] the group selection models suffer from the
same non-additivity problem that has caused problems for
inclusive fitness models.

When we work out a simple example, this turns out not to fit this
picture. The group selection separation suggested in Queller, and
applied to a simple example, turns out to be possible, whether or
not fitnesses are additive. Because the within-group selection
term and the between-group selection term are both compound
terms, that have fitness parameters in them as well as parameters
that represent population structure, one can perhaps argue that
this separation may be of limited use. But the point concerns the
possibility, and not the usefulness of the separation. And the
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possibility is completely unaffected by the additivity of fitness
effects (here: the value of d).”

The inclusive fitness separation however is only possible if
d=0. One can make an extension of the rule that incorporates d
(Queller’s rule instead of Hamilton’s rule), but that rule does not
achieve the separation that defines inclusive fitness (see Van
Veelen, 2011a,b). The inclusive fitness separation can perhaps be
seen as more useful than the separation that group selection
suggests, because it actually separates fitness parameters from
population structure. It is however not always possible.

The argument in Queller (1992) why both separations fail
together is that non-additive fitness makes the model fail his
separation condition. It is shown that, whichever position one
takes on the usefulness of the different separations, this simply
cannot be a correct argument. For our example, whether or not
Queller’s separation condition is satisfied depends on the values
of relatedness r, benefit b, and the expression probability P of the
cooperative behaviour for carriers of the cooperative gene. Addi-
tivity on the other hand is determined by the value of the synergy
parameter d. For our example, the separation condition therefore
has nothing to do with additivity, nor with the possibilities of
separation.

4. How the Price equation relates to the statistical literature

A key ingredient of the confusion that surrounds the Price
equation is that it uses the word covariance to denote a term that
is not a covariance. The term can best be described as a function, the
value of which depends on a list of numbers (see Section 2 and
Box 1). If those numbers are data, then this term is the sample
covariance. If those numbers are “just numbers”, then this term is not
even that. Certainly it is not a covariance, which is a well descript
property of the joint distribution of two random variables.

When he published his equation in 1970, George Price worked at
the Galton Lab at UCL. There is a touch of irony to the fact that he did
not use the insights of Karl Pearson, who was the first Galton
professor from 1904 to 1933. Pearson was the first to rigorously
define covariance as a property of the joint distribution of two
random variables, and distinguish that from the sample covariance,
which is a random variable itself, and an unbiased estimator of a true
covariance. These definitions, and the distinction between them, are
at the basis of modern statistics. It is very unfortunate that George
Price did not couple his good intuition with Pearson’s rigorous
mathematics, that was readily available in 1970.

Also the subsequent literature on the Price equation has
developed almost completely separately from the probability
theory and statistics literature. A telling sign of this is that in the
vast Price equation literature, we have not been able to find a
single instance of a statistical test being performed, nor of a proper
parameter estimate.® Nor have we found more general statements
concerning the properties of statistical tests—such as the chances
of false positives or false negatives—or properties of

5 It is also true that the compoundness of the two terms implies that it does
not separate fitness parameters from genetic parameters. The separation we find
however is totally consistent with what Queller (1992) suggests that this
separation should be—it is just what we get if we apply the suggested separation
there to the simple example—as well as with what for instance Wilson and
Wilson’s (2007) simple summary of group selection would suggest.

6 Two papers in which the Price equation features together with a parameter
estimate are Bowles et al. (2003) and Bowles (2009). However, the statistics in
Bowles et al. (2003), are just normal regressions, loosely inspired by the Price
equation, performed on simulation data, and commented on in Van Veelen and
Hopfensitz (2007). Also Bowles (2009) contains the Price equation as well as an
estimate. What is estimated there is Wright’s Fsr. This estimation is also done in a
normal, traditional way, without actually using anything from the Price equation.

estimators—such as unbiasedness, having minimum variance or
asymptotic efficiency. For instance, if the numbers in the Price
equation are data, and covariance-like term in the Price equation
were to be used as an estimation of the true covariance (which is
possible, because it is the sample covariance if it uses data), it
would be normal to remark that, with a slight change in the
denominator, it is unbiased. While these matters are at the core of
the statistics literature—it is standard practice to check for these
properties for every new estimator or statistical test proposed—-
none of these issues feature in the Price equation literature. This
should worry us seriously, because there is no reason to think that
statistics in biology should be any different from statistics in any
other field of science. The models may differ, but what we should
look at and worry about when we test them statistically should be
the same.

Something quite similar holds for the Price equation and
probability theory. Stochastic properties of models that we tend
to care for concern expectations and variances of random vari-
ables, and describe asymptotic properties, and how properties of
stochastic systems can be close to or far away from what they are
in the limit. This is not what features in the Price equation
literature, in spite of the fact that evolutionary predictions can
perfectly well be stated in terms of stochastic systems. In order to
get an intuition for why some common practices in the Price
equation literature are in fact impossible to reconcile with
probability theory, and also impossible to reconcile with statis-
tics, we have made an online tutorial (www.evolutionandgames.
com/price). The program will draw transitions (lists of numbers)
from a set of different distributions on demand, and indicates
how the Price equation literature deals with those. It also
indicates how probability theory and how statistics would deal
with the same lists of numbers. This should indicate the peculiar
place the Price equation has in the probability theory and
statistics literature.

That, however, does not at all mean that the intuition for the
Price equation itself, nor for ideas inspired by it, cannot be correct.
Nor are all results arrived at with the Price equation are wrong. It is
just that even after an inspirational phase with the Price equation,
one is still in need of normal probability theory and standard
statistics in order to get actual results in theorem-proof form.

5. Dynamic insufficiency

Dynamic insufficiency is regularly mentioned as a drawback of
the Price equation (see for example Frank, 1995; Rice, 2004). We
think that this is not an entirely accurate description of the
problem. We would like to argue that the perception of dynamic
insufficiency is a symptom of the fundamental problem with the
Price equation, and not just a drawback of an otherwise fine way
to describe evolution.

To begin with, it is important to realize that the Price equation
itself, by its very nature, cannot be dynamically sufficient or
insufficient. The Price equation is just an identity. If we are given a
list of numbers that represent a transition from one generation to
the next, then we can fill in those numbers in both the right and
the left hand side of the Price equation. The fact that it is an
identity guarantees that the numbers that appear on both sides of
the equality sign are the same. There is nothing dynamically
sufficient or insufficient about that (this point is also made by
Gardner et al., 2007, p. 209).

A model, on the other hand, can be dynamically sufficient or
insufficient. For simplicity, we can assume that we have a determi-
nistic model. If we then start with generation 1, we know exactly
what generation 2 will be. If the model is dynamically insufficient,
then that implies that if generation 2 is different from generation 1,
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then the model does not specify what happens when we are
departing from this new starting point. If on the other hand the
model is dynamically sufficient, then that implies that we also know
where we go from generation 2, even if it is different from generation
1, and where we go from generation 3, and so on.

If the underlying model is indeed dynamically insufficient, then
we have only one step. Therefore we also have only a Price equation
for one transition, that writes the change in gene frequency of this
one step in two equivalent ways. If the underlying model is
dynamically sufficient, then we have a sequence of steps. For each
of those steps we can write the change in frequency in two ways with
an equality sign in between, as the Price equation does. Notice that
for a dynamically sufficient model, we know for all terms in the Price
equation how they change as the generations follow each other, and
the population evolves according to the model. The Price equation
just processes the numbers that reflect the changes as time goes by.
This includes the covariance-like term, which therefore typically will
change along the path that the model describes. In Section 7.5 we
describe the model by Page and Nowak (2002), which is an example
of a dynamically sufficient continuous time model. They also
formulate the Price equation for this model at every point in time,
completely with a changing covariance-term. This shows
that dynamic insufficiency is not in any way a result of the Price
equation itself.

The Price equation is not dynamically sufficient or insufficient.
The reason why it is nonetheless typically accused of being
dynamically insufficient is that, unlike in Page and Nowak (2002),
it tends to be used in splendid isolation, and not in combination
with an explicitly stated model. This is likely to trigger projection
onto the Price equation of what implicit, or explicit, but informally
stated assumptions are thought to imply. An example of an
assumption that is so natural that it is sometimes thought that
there is no need to state it in the form of a mathematical property is
fair meiosis. Price (1970) projected what fair meiosis intuitively is
thought to imply onto the Price equation, rather than deriving an
actual result of a similar purport (see Van Veelen, 2005).

With or without an explicit model, reasonable researchers will
be aware that in a proper model the true covariance might not be
constant. This is of course perfectly sensible. It is however very hard
to project a covariance that is not constant onto one single Price
equation. But it is not the Price equation that is to blame here, it is
the fact that we are projecting implicit or informally stated
assumptions onto it. The standard idea concerning dynamic insuf-
ficiency is that the Price equation may help understanding or
explaining what happened in the step from generation 1 to gen-
eration 2, but not the subsequent step from generation 2 to
generation 3, because the true covariance might change once
arrived in generation 2. But that misses the point. If we would
have a model that tells us what generation 3 will be, departing
from generation 2, then the numbers that come with this new
transition can be filled in the Price equation just as well as those
reflecting the transition from generation 1 to generation 2 could.
The mistake is that the Price equation did not explain or predict for
the first transition either. It does not do anything, other than write
the change in frequency in two different ways. The intuition that
the true covariance might change during a process of selection is
very sensible, but it is more important to notice that if we have an
actual model that tells us what the dynamics will be, then the Price
equation does not provide an answer to any question pertaining to
any step in the selection process. The conclusion that the Price
equation is dynamically insufficient is therefore not correct; it is an
identity, and as such it cannot be dynamically sufficient or
insufficient. The fact that this conclusion is regularly drawn none-
theless, is informative though; it is a sign that it stimulates us to
project our intuition onto it. The Price equation then only feels as a
dynamically insufficient straightjacket for our intuition.

6. Is there such a thing as Price’s theorem?

The literature sometimes mentions the existence of a Price’s
theorem (see for instance Rice, 2004; or Gardner et al.,, 2007,
p. 208). Price himself however does not state a theorem, nor have
we been able to find an actual theorem by that name anywhere
else in the literature. Whenever Price’s theorem is mentioned,
however, it tends to come with a reference to the paper in which
the Price equation is presented (Price, 1970). Since the Price
equation is a tautology, and a theorem is a tautology that is not
obvious enough to be seen through without a proof, we can
conclude that Price’s theorem can only be the following.

Theorem 1 (Price; biology). If the left hand side is computed as
suggested in Price (1970), and the right hand side too, then they are
equal.

Proof. See Price (1970) or Van Veelen (2005). O

It is a matter of taste if the proof is considered obvious or not so
obvious, and therefore whether the term theorem is justified. What
is more important is that this theorem ceases to hold if one of the
sides is not computed as suggested. Crossing off terms on either
side—which tends to be done in the right hand side, starting with
Price (1970) himself—therefore causes a violation of the condition
for the result to hold, unless these terms happen to be zero (see
Van Veelen, 2005).

The criticism on the Price equation is not that it is wrong. It is
not wrong—as long as no terms are crossed off, and as long as we
abide the abuse of the term covariance. The criticism on the Price
equation is that, by lack of assumptions, it cannot be used for
deriving results that imply predictions. It is equivalent to Cruijff’s
footballogism; Theorem 1 just states that the change in gene
frequency equals the change in gene frequency. It is not incorrect,
but it is not very helpful either, equivalent as it is to Johan Cruijff’s
theorem.

Theorem 2 (Cruijff; football). If team A scores more goals than team
B, then team A wins.

Proof. Follows directly from the definition of winning.

Please note that both Theorem 1 and Theorem 2 do not produce
predictions. If a theorem is to produce a prediction, it must have
assumptions in it. Starting from those, the theorem then derives a
prediction, which can then be tested. If data are collected that do
not match the prediction, then we conclude that at least one of
the assumptions is not met. In this field, the shape of a theorem
that produces a prediction would therefore be as follows.

Theorem 3 (Biology). If the fitness of an individual depends on its
own and the other individuals’ behaviour according to Assumption 1,
..., Assumption N, then the behaviour that emerges is more likely to
be behaviour A than it is to be behaviour B.”

It is not the fact that Theorem 1 is a tautology that is
problematic. All theorems are tautologies, if correct. What is
problematic is that the lack of assumptions excludes that it
produces a prediction.

The only theorem that qualifies for the label Price’s theorem is
Theorem 1. We conclude that it indeed holds, but also that it does
not help produce a prediction. All it can do is give inspiration as for
what interesting or reasonable assumptions could be, and thereby

7 A possible theorem for football could have the form

Theorem 4 (football). If teams A and B have equally able players, and interactions
occur according to Assumptionl, ..., Assumption N, and A plays 4-3-3 and B plays
4-4-2, then team A is more likely to win than team B.
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help formulating theorems that come in the shape of Theorem 3.
The Price equation should remain on the scrap paper though. Once
we have assumptions, they should be stated explicitly, and be the
starting point for a theorem in the form of Theorem 3.

Queller (1992) also mentions Price’s rule. Again, there is no
mention of a rule in Price (1970) or Price (1972). There is only an
identity.

7. Repairs

A Price equation approach can—perhaps somewhat roughly,
and with exceptions—be described as “write (a version of) the
Price equation, and project your intuition onto it”. If this intuition
happens to be spot on, then the “result” is correct, even though
the Price equation is no proof. But the Price equation is in no way
a guarantee for a correct result, because our intuition is not
necessarily correct. If our intuition is just wrong, then there is
nothing that can be done. But if our intuition is only a bit off, then
we can typically make extra assumptions to make the result
correct. The “results” in the Price equation literature therefore
come in a riot of colours and flavours, and are to differing degrees
and in different ways in need of repair. This section gives a few
examples and starts with one that needs no repair at all.

7.1. Rousset and Billiard (2000)

The reference paper for inclusive fitness models by Rousset and
Billiard (2000) is an example where no repairs are needed. The Price
equation is mentioned only in Appendix A, on page 824, and it is clear
that nothing would change if the somewhat flexible formulation
“obeys a form of Price’s equation” would be replaced by a simple “is”.

The change in frequency of A owing to selection obeys a form
of Price’s equation (Price, 1970),

Ep[APler = Ep[W Ap] = EplXa(DW (D] —Ep[Xa()]W
= Ep[XA()W(i)]—p

where Ep[---] denotes conditional expectation given allele
frequency p in the population. The last equality is correct only
with the definition of the fitness function given above.

This statement is not at all incorrect; all it does is assume that
Xa(i) and W(i) are random variables, and that E,[X.4()W(i)] and
Ep[X.a(i)] exist for any p. The expression Ep[X.4()W(@i)]—Ep[X.A(i)]W
can be seen as a proper covariance, which is defined with the
choice of a fitness function. That implies that this covariance is a
given thing, that follows from model assumptions.

Rousset and Billiard (2000) thereby basically assume a covar-
iance, or they assume random variables that imply one, in exactly
the same way as the rest of the probability theory discipline does,
since well before 1970, and totally oblivious of the existence of the
Price equation after 1970. This statement perfectly fits the format
described in Section 4.3 of Van Veelen (2005, p. 418). Taking out
the reference to the Price equation would not make the slightest
difference for the derivation. One is of course free to call this “using
the Price equation” but it is worth noting that its use here is
atypical, because this paper just starts out with a proper model, the
limitations of which are also properly described, and does not
claim to ‘derive’ totally general things, starting with the Price
equation. This paper therefore needs no repair at all, other than
that the claim that it uses the Price equation could also be dropped.

7.2. Taylor (1989)

Only a minute step away from Rousset and Billiard (2000) is
Taylor (1989). This is an example of a paper that can be repaired with
the smallest of efforts. As suggested in Section 5.2 of Van Veelen
(2005), all that needs to be done is that a covariance has to be
assumed rather than claiming that it is derived. This is easily done,
and totally inconsequential for the elegant results in this paper.

7.3. Queller (1985)

Some claims arrived at with the Price equation are ‘almost’
right, in the sense that they are right if they are restated in a
different form, and, most importantly, if we formulate the right
assumptions, or explicitly state implicit ones, under which the
claim is actually correct. That is important, because with the Price
equation, it is sometimes suggested that generally true claims are
derived that rely on no assumptions whatsoever.

Queller (1985) assumes fitness effects of interactions that can
be represented by the following matrix.

Altruist Not altruist
Altruist B-C+D -C
Not altruist B 0

However natural it seems to just postulate a matrix with fitness
effects, one can nonetheless wonder what that means. Can we be
certain that there is a dynamical system with parwise interactions
that would produce those fitness effects? In Appendix C it is shown
that if we think of the replicator dynamics, it is not possible to
construct one so that it reproduces these fitness effects of interac-
tions. If we have a matrix with payoffs, then one can combine these
with the replicator dynamics, and derive the fitness effects of
interactions from them. Those fitness effects will then be frequency
dependent. If we would go in the other direction, and start with
fitness effects, we can try to reverse engineer what the parameters
should have been in order for them to lead to these fitness effects in
the replicator dynamics. This turns out to be a problem; it is in
general not possible to reverse engineer the payoffs so that they
combine with the replicator dynamics to produce fitness effects
described by B, C and D. Also, for the degenerate choices of B, C and
D for which one can, the replicator dynamics is not well-defined, in
the sense that it has no solution, unless B=C=D =0.

Instead of parameters that represent fitness effects, we could
however consider parameters that represent payoffs. If we do that,
with lower case letters for payoffs instead of upper case letters for
fitness effects, we get the matrix we also used in Section 3.2

Altruist Not altruist
Altruist b—c+d -—c
Not altruist b 0

Van Veelen (2011a) shows that the following equivalence for games
with two players and two strategies holds. The paper also contains a
translation from way the condition is expressed here—
rb—c+(r+(1-r)p)d > 0—to the notation in Queller (1985), and back.

the dynamics are payoff monotonic
¢
cooperation is selected if rb—c+(r+(1-r)p)d > 0

That means that, whatever the dynamics, as long as they are payoff
monotonic, the direction of selection is given by Queller’s condition.
One could hope that, while a normal derivation gives us this
conditional result, a derivation with the Price equation gives us a

8 We would like to thank an anonymous reviewer for pointing out the issue of
payoffs versus fitness effects.
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more general, unconditional result. This example however shows that
if the impression of deriving a more general result were to be created,
then it is misleading. Payoff monotonicity is not only a sufficient, but
also a necessary condition for Queller’s rule to apply with two players
and two strategies. Any dynamics that is not payoff monotonic
therefore serves as a counterexample against the general, uncondi-
tional version of the result. Luckily, payoff monotonicity is a relatively
mild assumption, which implies that Queller’s rule applies for a
relatively large set of dynamics. Still it is important to realize that it
nonetheless does not apply in general. Also it is important to realize
that just postulating fitness effects from pairwise interactions—rather
than payoffs—is not necessarily enough to formulate a model.

7.4. Queller (1992)

Although the result from Queller (1992) is a bit further away
from being correct than the result from Queller (1985), it can also
be restored under extra assumptions. Van Veelen (2009) shows
that inclusive fitness gives the right prediction for a specific set of
group selection models if we assume that (1) the dynamics are
payoff monotonic and (2) the game satisfies generalized equal
gains from switching (or, in other words, if we assume additive
fitness effects).® Note that the assumption of payoff monotonicity,
which was enough to restore Queller (1985), is not enough to
restore Queller (1992); the counterexamples in Section 3 all use
the replicator dynamics, which are payoff monotonic.

Price (1972) is also an application of his equation to group
selection. Section 6 in Van Veelen (2005) constructs a counter-
example that shows that his claim is just not correct and there-
fore beyond repair.

7.5. Page and Nowak (2002)

In the replicator dynamics (Taylor and Jonker, 1978, see also
Weibull, 1995, and Hofbauer and Sigmund, 1998), the evolution
of the population share of strategy i is described by

X = [fi(x)—f (X 17)

where x; is the share of strategy i, X =[Xq, . ..,Xp], fi(X) the expected
payoff of strategy i in population state X, and f(x) = S7_ ; fi(X)x;.
(Here we follow the notation from Page and Nowak, 2002, where
fi is the expected payoff of strategy i, and not the frequency of
groups with i cooperators in it, as it is elsewhere in this paper).
This is a deterministic dynamics, in which the assumption of an
infinite population implies that every change in population shares
is exactly equal to the expected value of that change.

Now suppose we are in state x, and we draw a random
individual. Let X(i) be the 1 if the strategy of this randomly drawn
individual is strategy i and 0 otherwise and let Y be the fitness of
that individual. Now we can compute the covariance of those two
random variables. It is not too hard to see that

Cov(X(@),Y) = EXDf:(0)]-EIXDIEi(x)]
= [fi(x)—f X)Ix; (18)

Thereby we see that for the replicator dynamics, x; = Cov(X(i),Y).
One can therefore say that the dynamics can be described with n
Price equations (or n—1, since the nth follows from >7'_, x; =1).

It is clear that those covariances depend on, and change with,
X as the population evolves, and equal the derivatives. This shows
that dynamical sufficiency is therefore not a problem of the Price
equation per se.

9 Van Veelen (2009) is also a little careless here, not stating explicitly that
Theorem 1 assumes payoff monotonic dynamics. See also Van Veelen (2011a,b)
where payoff monotonicity is stated explicitly as an assumption.

This is the idea in Page and Nowak (2002), although it is stated
a bit differently there. They introduce a vector p, which can be
chosen to be, but is not restricted to, the unit vectors e',...,e"
The average value of p is defined as p = >_7_; pix;, which equals
the population shares x; if p=e'. Then they claim that the Price
equation and the replicator dynamics are equivalent. If we read
that as the replicator dynamics being equivalent to a set of Price
equations for p=e!,...,e" then that is a statement similar to
what we stated just before, only that it is not entirely correct to
say that they are equivalent. The replicator dynamics is a
model—it assumes that the population shares evolve according
to Eq. (7)—while the Price equation tracks these dynamics. It is
only equivalent with the replicator dynamics if it is fed with the
replicator dynamics in the first place; if the actual dynamics
would be different from (7), that is, if X; # [fi(X)—f (X)]x;, then the
Price equation would also turn into a Price inequality;
X; # Cov(X(i),Y). Therefore the Price equation is only equivalent
to the replicator dynamics if you first put the replicator dynamics
in it. The Price equation can rewrite the change in gene frequency
for a model, but it is not a model itself, unlike the replicator
dynamics (see also Price, 1972, pp. A20-A24; Page, 2003;
Traulsen, 2010).

8. Conclusion

The life of Price is, to quote Bill Hamilton, “quite a story”. He
went from applying chemistry to medicine in the Manhattan
project to criticizing extra sensory perception research, and from
evolutionary biology to biblical exegesis concerning the Passion
chronology. Especially the tragic last years, where research con-
cerning the evolution of altruism blurred with a quest for being a
good person himself, ending with his disillusioned suicide, appeal
to the imagination. A converted atheist goes from helping the
homeless to being homeless himself. The equation, which he
himself thought of as a revelation from God, against the back-
ground of a life that shows how hard it can be, not only to live a
life of goodness, but also to live a life at all.

While Maynard Smith and his ESS concept has proven incred-
ibly useful, the Price equation has produced mixed “results”.
Some results that are claimed to be derived with the Price
equation are indeed correct, but others are not, and tend only to
be correct under extra assumptions. Derivations with or expan-
sions of the Price equation are therefore typically a reflection of
an intuition, rather than a way to prove that this intuition is
correct. That of course does not mean that the intuition is wrong,
but projecting it on onto the Price equation is just not the same as
deriving a result.

Some results that are derived with the Price equation can also
be derived without the Price equation. Other results that are
derived with the Price equation cannot be derived without the
Price equation. The latter results are wrong. The reason why they
must be wrong if they cannot be derived without the Price
equation, is that the Price equation has no modelling content
and makes no assumptions. Without modelling content, nothing
can be derived; in the absence of model assumptions, anything
could happen. Any claim or prediction must therefore follow from
model assumptions. The only definitive way to check if a result
arrived at with the Price equation is actually correct, is therefore
to simply start with the model assumptions, and derive the result
without the Price equation. With this as an ultimate check, it
seems that a more efficient way of separating correct results from
incorrect ones is to go from model assumptions to predictions
without the Price equation in the first place.

One Price equation result that is not correct is the general
equivalence of group selection and inclusive fitness models
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suggested in Queller (1992). For a specific set of group selection
models, inclusive fitness gives the correct prediction, if the game
has generalized equal gains from switching, that is, if fitness
effects are additive (Van Veelen, 2009, 2011b).1° If the game does
not have equal gains from switching, then inclusive fitness does
not give the correct prediction. Whether or not games with
additive effects capture all, many, or not so many of the relevant
evolutionary situations is an empirical question. We do not know
the answer to that question. It is however important to realize
that this equivalence is not a generally correct result.
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Appendix A. Algebra I (phenotype=genotype)
A.1. Group selection decomposition |

In Queller, G, is the average genotypic value of a trait in a
group, W, is the average fitness in a group. Because the replicator
dynamics has the convenient property that adding a constant to
all payoffs does not change the dynamics, there is an unambig-
uous choice for what the so-called covariance (as used in the Price
equation literature) between the two should be, given that G=P:

N T+ (M=) =, 1 T+ (N—0)TTp
COU(Gg,Wg)= Zflﬁ C,i (n ) DI_ZflﬁZﬁ C,i (n ) D,i
i=1 i=1 izt

(AT)

With n=2, the payoff matrix from Queller (1992),!' and
p = 1fi+f, that reduces to

1. b-c _ 2(b—c+d b—c _ 2b—c+d
ConGaWa = 3 75+, 205D [ 23 4, 207D

10 Gardner et al. (2007) and Marshall (2011a,b) have reacted to examples of
games that do not have equal gains from switching by adjusting the r between
games in order to make Hamilton’s rule work. It should be noted that in the model
in Van Veelen (2009, 2011b) the interaction structure, that is, who interacts with
whom for any given frequency, is unaffected by the change in the game. Changing
the r between games therefore prevents Hamilton’s rule from being an actual rule,
because, as the definition of a rule suggests, a rule is not a rule if it changes from
case to case (Van Veelen, 2011a).

11 Again, Section 7.3 and Appendix C discuss the distinction between payoffs
and fitness effects.

=(b—0) (p— }lﬁ) +f2d—pl(b—c)p+fod]

= b-0(p-p*~ 31 ) +(1-p)d (A2)

We use following natural correspondence for n=2 between
relatedness and frequency on the one hand and group composi-
tions on the other, fo(p)=(1-r(1-p)>+r(1—p), fi(p)=(1-1)2p
(1—p) and fo(p) = (1—r)p?+rp. With it we get

b—
Cov(Gy,We) = (b-0p(1—p)— ~ (1-Pp(1-p)
+(1=p)((1-n)p*+rp)d

=p(1-p) [b—c— ?(1—r)+(r+(1 —r)p)d}

=p(1-p) [?(l +r)+(r+(1fr)p)d] (A.3)

In order to arrive at the second term in the decomposition, we can
just subtract the first term from the total:

p—Cov(Gg,Wy) = p(1-p)[rb—c+(r+(1-r)p)d]—p(1-p)
b—c— ?(1 —r)+(r+(1—r)p)d] —p(1-p) {—(1—r)b+ ?(1 —r)]

b+c
—pa-p| 30| @
Together, this gives us the following decomposition, which is
Eq. (4) in the main text:

between group selection within group selection

b e T
. —C C
p=p(-p |- +r)+[r+(1—r)p]d} —-p(1-p) {%(1—0}

This approach, where the within-group selection term is com-
puted as the remainder, will also work for n > 2, because both p
and Cov(Gg,W;) are defined for all n and the within group term
must be the remainder in order to be a proper decomposition.

Appendix B. Algebra II (genotype and phenotype may differ)
B.1. Inclusive fitness decomposition

We start with payoff monotonicity. Now, the expression with
probability P implies that not everyone with the gene for
cooperation does indeed cooperate, which complicates the com-
putation of the average payoffs. Assuming that expression is
independent from group composition, and using Eq. (1) from
the main text, we get

p fo - {PP(b—c+d) - 2+ 2P(1-P)(b—c)+(1-P)* - 0 - 2} +f; - {P(—C)+(1—-P)0}

pd-p) ~ 2p
_fA{PD)+(1-P)0}+f5-0-2
2(1-p
:P<f2 (P(b—c+d)-2+2(1-P)(b—0)} +f1 - {=¢} _filb} )
2p 2(1-p)
fa- 2(b—0+2Pd}+fi - {—c}  bfy )
=P - B.1
( 2 201-p) ®D
Singling out the c, the b and the d, this is rewritten as
. 2f2+h 2f fi 2f
p=pa-pP( - e (550 0+ 557 ®2

Now we use p=Q2f+f1)/2, r=2f/2p—f1/2(1-p) and f,/p=
P(T|T)=r+(1-r)p (see Van Veelen, 2009, and Appendix A) to
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arrive at:
QUELLER’S CONDITION PLUS

p=p(1—p)P(—c+1rb+(r+(1-r)p)Pd)
This is Eq. (6) from the main text.

B.2. Various covariances and route 2 to the separation condition

Because Cov(P,W), Cov(G,P) and Var(P) are relatively easy to
compute, we begin with those.

Cov(P,W) = E[PW]—E[P]E[W]

. i . o
. o <]~>P’(1 —P)Jjnc;
sl :
izo

n A
- i |pa—p)L
5 (5 (o)

n i i\ . iiJmcj+Mm—mp,
£fos e

i=0 j=0

(B.3)

For our n=2 example, that is

Cov(P,W)=f; {P%(—c)} +f {2P(1—P)%(—C)+P2 %(b—c+d)}

Sk

+f2{2P(17P)% 4 p? w}}

=P {fl 1(—C)+fz{(1 —P)(—c)+P(b—c+d)}}
—P?p {1{ }+f2{(1 —P)(b—c)+P(b— c+d)}}
=P{f1f(fC)+fz{(fC)+P(b+d)}}

-P?p { 1{ }+fz{(b c)+Pd}}
=P[-pc+fo{P(b+d)}]-P*p[p(b—c)+f>Pd]
=Pp {—c+% {P(b+d)}} —P?p? {(b—cH—%Pd}
=Pp[—c+(r+(1-rp){P(b+d)}]

P?p?[(b—c)+(r+(1-r)p)Pd] (B.4)
We also compute Cov(G,P).
Cov(G,P) = E[GP]—[E[G]E[P] = pP—p?P = p(1—p)P (B.5)
We also compute Var(P). Because for every individual, P2 = P

Var(P) = E[P*]—[E*[P] = E[P]-E?[P]

-5 (fZ( )‘”“ PW])
[EEECe)]
SAGR)

= pP—(pPy’

These variances and covariances can be used to check under
what conditions the equivalence in Queller (1992) holds, as

(B.6)

summarized by Equation (16) in the main text.

_ Cov(G,P)Cov(P,W)
Var(P)

The right hand side of this equation is
Cov(G,P)Cov(P,W)

Var(P)

_ p(A=p)PPp[—c+(r+(1A=np){P(b+d)}]-P*p*[(b—) +(r+(1-r)p)Pd]]

pP—(pPy?
—p(—p)P [[—c+(r+(1—r)p){P(b+d1) ]I—ﬂl;p[(b—C)+(r+(1—r)p)Pd]]

(P)

:p(l—p)P( c+r b+(r+(1 r)p)Pd) (B.7)

The left hand side is given by equation (6) from the main text:
p =p(A—p)P(—c+rb+(r+(1-r)p)Pd)

It is clear that these are only equal if r=0, b=0, P=0or P=1,
while they are unequal if r>0, b>0and 0<P < 1.

B.3. Group selection decomposition
In Queller (1992), G, is the average genotypic value of a trait in
a group, W, is the average fitness in a group. The so-called

covariance (as used in the Price equation literature) between
the two should now incorporate the expressed behaviour.

Cov(Gg, W) = GgWg]fE[Gg][E[Wg]
i\ . -

-y (ﬁ Z ( j>W<1—P>'JWgo'>>

i=1 1—1

n i i\ . .
-2 (ﬁ ') > (ﬁ > <J->P‘<1—P>"fwg(i)>

j=1

i i\ . L
( j>lﬂ(1—P>'fWg(i>>
1

i=1 =
n Lo\ . L
-p fi <j>P'(1—P)"Wg(I)>
i=1\ j=1

With n=2, the payoff matrix from Queller (1992),'? and
p=1fi+f>, that reduces to

Il
™M=
T
ST
=
Il -

(B.8)

Cov(Gg, W) = % fi {P? +( —P)O}
+f2{PZM+ZP(1 P)—+(1 P)0 }

o5l

+f {PZ 72(b*26+d)+zp(1—1))? +(1 —P)ZOH

—P[of {E} +f2{P72(b_ZC+d) +2(1—p)¥”
—Pp{ﬁ{ }+f{ 72(b—2c+d)+2(1_P)?H

—P|(6-0)(p- 4f1 ) +/2Pd] ~Pp[b-cp-+:Pd

[ 1
—P|0-0)(p-p*~ 3 ) +(1-pPd] (B9)
With the following natural correspondence for n=2 between relat-
edness and frequency on the one hand and group compositions on
the other, fo(p)=(1-r)(1-p)*+r(1-p), fi(p)=(1-12p(1-p) and

12 Again, Section 7.3 and Appendix C discuss the distinction between payoffs
and fitness effects.
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fo(p)=(1-r)p? +1p, we get

bh—
Cov(Gy,Wy) =P |(b-cIp(1-p)~ 5 (1-rjp(1-p) - (1-p)(1-p? + 1Pl

=Pp(1-p) {bfcf ? 1-n+a+Q fr)p)l’d}

=Pp(1-p)[*5 A (-rpPd (B.10)

In order to arrive at the second term in the decomposition, we can
just subtract the first term from the total:
p—Cov(Gg,Wg) =Pp(1—p)[rb—c+(r+(1—1)p)Pd]
bh—
—Pp(1-p) {b—c— Tca P+ r+(1 —r)p)Pd}

=Pp(1-p) {7(17r)b+ %(1 fr)}

b
— _pp(l p)[iu r)}

(B.11)
Together, this gives us the following decomposition, which is Eq. (8)
from the main text:

between group selection within group selection

b+c
p=Pp(1-p) [—(1+r)+[r+(1 r)p]Pd} —Pp(1-p) {i(l r)}

This approach, where the within-group selection term is computed as
the remainder, will also work for n>2, because both p and
Cov(Gg,Wy) are defined for all n and the within group term must
be the remainder in order to be a proper decomposition.

B.4. Other so-called covariances we find in Queller (1992)

In Queller (1992) we encounter a few Cov-terms. Here we
compute them for our example.

Cov(Gg,Py) = [E[Gng]f[E[Gg][E[Pg]

£ (i

DYy ( Dy (})P"‘M”i;)

i=1 1_1 j=1

iiP

-3 () S

= P(E[G}]-E*[Gg))

=P Var(Gy) (B.12)
For n=1—the individual covariance between G and P—that is
Cov(G,P) = E[GP]—E[G]E[P] = pP—ppP = p(1—p)P (B.13)
For our n=2 example, that is
Cov(Gg,Py) = P<Zﬁ_zfl Zf > (Zfz—P >

i i=1

=PQ fi +£—pH =Pp-Lfi-pH =P@p(1-p)-ifi) (B.14)
With fi(p) = (1-r)2p(1-p) that is
Cov(Gg,Py) = P(p(1—p)—3(1-1)p(1-p))

=p(1-p)P(1+71)) (B.15)

We also compute Cov(Pg,Wy).
Cov(Pg,Wg) = E[Pg W] —E[Pg]E[Wg]

— Z (ﬁz ( >P’(l _pyil Wgo))

i=1 j=1

S (153 (-

Z (fz ( )P'(l Py fwgm)

ji=1

(B.16)

For our n=2 example, that is

Cov(Pg, W) f1{ 1b— C}+f2{2[)(1 P)luﬂﬂgw}

-2 )b

+f2{2P(1 p)— PZMH
=Pf12{ }+f2{(1 P)—+P(b c+d)H
-P’p {fl {b—} +h{a *P)(be)+P(b—c+d)}}
=l 3 {25+ {5 (2 +a) ]

-P°p {1{ }+fz{b c+Pd}}

o)

—P?p[p(b—0)+f>Pd]

(B.17)
With fo(p) = (1-r)p? +1p, we get

Cov(Pg,Wy) = P p{?} H((1=r)p? +rp){P<¥ +d> H

—P?p[p(b—c)+((1-1)p? +p)Pd]

=Pp {?} +((1fr)p+r){P<? +d> H

—P?p?[(b—0)+((1-r)p+1)Pd]
—Pp {E}(l—rP)+((l—r)p+r)Pd]

—Pp? [(b oP—(1— r)P< >+((1 r)p+r)P2d}

=Pp _{%}(1 +rP)+((1 —r)p+r)Pd}

—pp? [(?)(1 +PP+((1 —r)p+r)P2d} (B.18)

Check that for P =1 this is the same as Cov(Gg,W;) for P=1, as it
should.

B.5. Route 1 to the separation condition

Here we compute the following covariance:
Cov(eq, W) = E[ecW]—E[ec]E[W]
The disturbance term is &g = G—o¢—pfpP. The fact that

_p—pP 1-p
%+Per=T=pp T Tpp —
implies that =0 if G=1 and P=1.
It is relatively simple to compute [F[eg]:

Eleg] = P[G=0,P=0]- (¢ given G=0,P=0)
+P[G=0,P=1]-(¢; given G=0,P=1)
+P[G=1,P=0]- (¢ given G=1,P=0)
+P[G=1,P=1]-(¢c given G=1,P=1)

=(1-p)- —flc+0 (—0c—Pep)+p(1-P) - (1-06)+pP -0

+p(1 P). < ﬂ):o

_— (B.19)

=-a-pi=
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This implies that Cov(eg, W)= E[ecW]. It is a bit more elaborate
though to compute E[ecW]. We will denote by (G,G) the genotype
of self and other, respectively, and by (P,P) the phenotype of self
and other.
E[ecW] = P[(G,G) = (0,0)] - (¢cW given (G,G) = (0,0))
+P[(G,G)=(0,1),(P,P) = (0,0)]
-(e¢W given(G,G) = (0,1),(P,P) = (0,0))
+P[(G,G)=(0,1),(P,P)=(0,1)]
-(¢gW given (G,G) = (0,1),(P,P)=(0,1))
+P[(G,G) = (1,0),(P,P) = (0,0)]
-(ecW given (G,G) = (1,0),(P,P) = (0,0))
+P[(G,G)=(1,0),(P,P) = (1,0)]
-(ecW given (G,G) = (1,0),(P,P) = (1,0))
+P[(G,6)=(1,1),(P,P) = (0,0)]
-(e¢W given(G,G) = (1,1),(P,P) = (0,0))
+P[(G,6)=(1,1),(P,P)=(0,1)]
-(¢gW given (G,G) = (1,1),(P,P)=(0,1))
+P[G,G) =(1,1),(P,P)=(1,0)]
-(egW given (G,G) = (1,1),(P,P) = (1,0))
+P[G,G)=(1,1),P,P)=(1,1)]
-(egW given (G,G) = (1,1),(P,P)=(1,1))

=(1-p)(r+1-n1-p))- —oc-0
+(1-p)(1-rp(1-P)- —as-0
+(1-p)A=r)pP - —og-b
+p(1-n(1-p)(1-P)-(1-0c) -0
+p(1-r)(1-p)P-0-—c
+p(r+(1-np)(1-Py* - (1-0c) - 0
+p(r+(1-np)(1-P)P - (1-0c) - b
+pr+(1-rpPA1-P)-0-—c

+p(r+(1-r)p)P* - 0 - (b—c+d) (B.20)

_ p—pP
=(1-p)A-r)pP . — 1-pp’ b
1-p

+p(r+(1-rp)(1-P)P - 1 pp b
__pa-pa-npa-p) ,
- 1-pP

" p(-p)r+(A-npP1-P) b

1-pP

=bp(1-p)P(1-P) (%W)

bp(1-p)P(1-P) 1

rbp(1—p)P(1-P)
1-pP

Appendix C. Payoffs and fitness effects

In the replicator dynamics (Taylor and Jonker, 1978) the
derivative of the frequency in a game between strategies 1 and
2 is then given by

p1 =p1(@—7)
=p1(1-p1)(T1—T2)

where p, is the frequency of strategy 1, p,=(1-p;) is the
frequency of strategy 2, @, is the average payoff for 1, T, the
average payoff for strategy 2 and T =p,71+p,T> is the overall
average payoff. Suppose for simplicity we look at random match-
ing in combination with the following matrix (see Van Veelen,

2011a,b) for replicator dynamics in setting with population
structure)
1 2
1 a a
2 00
1. The payoff matrix

In this simple example, strategy 1 players get a payoff of a,
whatever the type of their opponent is, and strategy 2 players get
a payoff of 0, whatever the type of their opponent. This implies
that

T1=a

p1=p1(1-p1)a
Another way to represent that is to say that
Presae ®P1e(1+AL(1-p1a)

This allows us to write this with fitness effects (which are
frequency dependent) resulting from interactions, rather than
payoffs, resulting from interactions. Those fitness effects are
(1—py)a for any strategy 1 player, regardless of the strategy of
the player it interacts with

1 2
1 (1-ppa (-ppa
2 0 0

2. The fitness effects matrix

If we however are given a matrix with fitness effects already, a
natural question would be if we could reverse engineer what the
payoffs should be

1 2
1 A A
2 00
3. The fitness effects matrix

Reverse engineering now gives us the following payoff matrix:

1 2

1 A A
1-p1 1-p

2 0 0

4. The payoff matrix

Here the fitness effects are constant, but the payoffs are frequency
dependent. That in itself does not have to be a problem, if only it
would lead to a well-defined differential equation. Unfortunately
that is not the case; the derivative is now p; =p;A, and that
implies that (0,1) is no longer invariant under the dynamics (the
increase in p; does not slow down or stop near p; =1).

More complications arise when we have a more general matrix

1 2

1 a b

2 ¢ d

5. The payoff matrix

for which

P1.t+ac = Pr.e(1+At(1—py ) (b—d+p(a—b—c+d)))

Now it is no longer possible in general to write this as
P14 ac & p1e(1+At(pA+(1-p)B))
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Also reverse engineering is not possible, unless we put restric-
tions on what the fitness effects are allowed to be.

When we are presented with the following matrix, it is there-
fore not clear if we can think of a dynamics in which these
numbers are indeed fitness effects of interactions between indi-
viduals. At least the replicator dynamics do not facilitate that.
That does not mean it is not possible to make a dynamics for
which the B, C and D are fitness effects. But given that the
replicator dynamics are the standard way to model pairwise
interactions, and the replicator dynamics do not help here, an
alternative is required.

1 2
1 B-C+D —-C
2 B 0

6. The fitness effects matrix
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