TOOL: netstat, sar, iptraf, bwm-ng
AR: Reduce the traffic, packet count{
AR: Compression @
AR: Bufferization, BDPig
AR: MTU @
AR: Faster hardware/links@
AR: Virtual interfaces@
TOOL: vmstat, mpstat, sar

Network problems?

AR: Reduce the amount of worker threads
AR: Less context switches @
AR: Scheduling groups, quanta adjustments, priority@

X Scheduling overheads?«

Lots of sys%

TOOL: top, sar
AR: Constrain the usage of physical memory@

AR: Decrease memory per process igg
AR: Swappiness &
AR: Lock pages in memoryg

Swapping?

AR: Compress swap @&

TOOL: strace, perf, oprofile
AR: Time spent in other kernel?
AR: Time spent in kernel-space with locking@
AR: Kernel bugs? &
TOOL: mpstat, sar
AR: Interrupt offloadge \ Interacting with devices?

X Other kernel?

Lots of irq%, soft%

AR: IRQ balancing@ /
TOOL: iostat, sar
AR: Reduce the disk activitygy \
AR: HW caching/bufferization@@ | Extensive disk activity?
AR: SW caching/bufferizationf
AR: More disks always help (but not your budget)

\ Lots of iowait%

Lots of user%

JVM is burning the cycles?}

@ AR: Know your command-line options

@ AR: Upgrade to newer JVM?

TOOL: -verbose:gc, -XX:+PrintGCDetails, VisualGC
@ AR: Tune Java heap, generations, and regions

@ AR: Thread stack size

/ TOOL: -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, -XX:+PrintGCDateStamps,
-XX:+PrintHeapAtGC, -XX:+PrintTenuringDistribution, -Xloggc=<file>

-XX:+UseSerialGC

The only GC supports NUMA
-XX:+UseParallelGC [ Collects young gen in parallel
\ Collects old gen in single thread

Collects young gen in parallel

GC
HotSpot GCs

-XX:+UseParallelOIdGC i
A__ Collects old gen in parallel

-XX:+UseConcMarkSweepGC
Replaces CMS
Set region size: -XX:G1lHeapRegionSize=#
-XX:+UseG1GC

@ AR: (Un)usual tuning [

Extensive tuning opportunities, see elsewhere

Algorithmic problems?

Set the maximum pause for GC: -XX:MaxGCPauseMillis=#
\ k Set the usual time between GCs: -XX:GCPauselntervalMillis=#

-XgcPrio:deterministic

JRockit GCs
-XpauseTarget=#

TOOL: verbose:class, MXBeans

@ AR: Turn off bytecode verification: --no-verify
@ AR: Turn on CDS: -Xshare:on
@ AR: Recompile your Java code with updated javac

Classload

@ AR: Increase the size of system dictionary

@ AR: Repackage classes into small amount of larger JARs
TOOL: PrintCompilation, MXBeans
-server

@ AR: Choose the compiler |/ -client

-XX:+TieredCompilation

JIT

@ AR: Low-level tuning
& AR: Go to Open)DK ML and ask
TOOL: Profilers + Brain
Algorithmic CompIeXity[ & AR: Pick the algorithm with lower complexity

@ AR: Pick the algorithm with lower constants
TOOL: Profilers + Brain

! @ AR: Memoize the results where appropriate

AR Use new objects where appropriate

Caching/Memoizing

TOOL: top, sar
AR: Increase cache memory (reduce other usages)ig

Not enough disk/block caches?

AR: Get easy on flush()-es and cache invalidationsg

AR: More disks always help (but not your budget)
TOOL: vmstat, mpstat
AR: Get more threads! Parallelize applicatiod@y

Not enough SW threads

AR: Make the scheduler to use physical cores first (affinity@y
AR: Turn off CMT / use critical strandsg
TOOL: lock profilers, jstack

Lots of idle%

AR: Get rid of the locks & \ Wait locks?
~_ Not enough RUNNABLE SW threads

AR: Use lock-free algos @ ) /

Network latencies

TOOL: -verbose:gc, etc
AR: More threads for GCig \ GC pauses?
AR: Pause-targeted GC-specific tuningg /
Original mindmap

~\Aleksey Shipile\

aleksey.shipilev@oracle.com ,

Original mindmap

~\ Sergey Kuksenko

sergey.kuksenko@oracle.com ,

GC parts
—— ——\_Vladimir Ivanov

vladimir.x.ivanov@oracle.con ,

Partial translation to Englist

~\_lgor Maznitsa

igor.maznitsa@igormaznitsa.com ,

Credits

Memory problems?

@ AR: For (distributed) caching the record size should be smaller
TOOL: Profilers + Brain
Busy-waiting [ @ AR: Replace polling with timed waits

\ @ AR: Replace spinloops with spin-then-block

Batching and work scheduling

TOOL: Easier to fix and test; or, use HWCs to diagnose
TLB / @& AR: -XX:+UselargePages
AR: Large page sizes?

TOOLS: (HWC) oracle solaris studio performance analyzer, vtune
@ AR: Enable/Disable prefetches

@ AR: Blocking decompositions
@ AR: Shrink data set
Spatial locality [T@ AR: -XX:+UseCompressedOops
@ AR: Denser data structures
TOOLS: Java-level profiling + HWC

Plain non-shared memory

Temporal locality

Capacity

Plain shared memory

Volatile: enforcing visibility

Atomics: enforcing atomicity

Primitives ] i )
Spin-loops: enforcing mutual exclusion

Spin-locks
synchronized
j.u.c.RL

Caches

Wait-locks

Consistency

@ AR: Choose the correct primitive |/ Expected contention

Expected contention overlap

Coherence

Try to optimistically check for easier condition

@ AR: Optimistic checks . i .
“\__Fallback to pessimistic (costly) operation otherwise

Locks

@AR: Striping / Queues

Counters

Techniques

Immutability

@ AR: Get rid of the communication whatsoever |/ Distinct copies

\ Thread Locals

) Object Padding
@ AR: False Sharing
“__ Split the objects, and pad again

TOOL: numastat

@ AR: Communication cost is the major contender

Fractal structure

N\__ ...not only between CPU packages, but between cores, hosts, clouds

NUMA (NUCA)

@ AR: Locality of communication
& AR: -XX:+UseNUMA
@ AR: Thread/Memory Affinity
TOOL: busstat, multevent
Memory bandWIdthﬁ AR: More faster memory
AR Multiple channels to main memory
@ AR: Multiple IMCs to handle the load

@ AR: Overclocking
Not enough CPU frequency? — _

\ @ AR: CPU frequency governors
TOOL: (HWC), vtune, solstudio

@ AR: Going for native platfrom-specific code
Specialized code ,~— _

< @ AR: JIT intrinsics

Not enough Execution Units?

CPU problems?

o @ AR: cryptoaccelerators
Specialized Hardware ,~— _

< @ AR: GPU

& AR: Moar CPUs!
TOOL: (HWC) solstudio, vtune
ILP depleted? [ i AR: less branches?

& AR: more ILP



