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EXECUTIVE SUMMARY

Jurisdictions across the country are grappling with the challenges and opportunities associated with
increasing adoption of distributed solar resources. While distributed solar can provide many benefits—
such as increased customer choice, decreased emissions, and decreased utility system costs—in some
circumstances it may result in increased bills for non-solar customers. In setting distributed solar
policies, utility regulators and state policymakers should seek to strike a balance between ensuring that
cost-effective clean energy resources continue to be developed, and avoiding unreasonable rate and bill
impacts for non-solar customers.

To address this challenge, many jurisdictions are considering modifying distributed solar policies or
implementing fundamental changes to rate design, such as increased fixed charges, residential demand
charges, minimum bills, and time-varying rates. While it is prudent to periodically review and modify
rate designs and other policies to ensure that they continue to serve the public interest, decision-makers
frequently lack the full suite of information needed to evaluate

distributed solar policies in a comprehensive manner. As this report

demonstrates, it is critical to have accurate inputs, especially for

Regulators must strike a
balance between ensuring
decrease rates for non-solar customers. that cost-effective
resources continue to be
developed, and avoiding
distributed solar policy options comprehensively and concretely. This unreasonable impacts on

“avoided costs” in order to identify whether a policy will increase or

This report provides a framework for helping decision-makers analyze

framework is grounded in addressing the three key questions that non-solar customers.
regulators should ask regarding any potential distributed solar policy:

1. How will the policy affect the development of distributed
solar?

2. How cost-effective are distributed solar resources?

3. To what extent does the policy mitigate or exacerbate any cost-shifting to non-solar
customers?

Answering these questions will enable decision-makers to determine which policy options best balance
the protection of customers with the promotion of cost-effective distributed solar resources. This report
describes the analyses that can be used to answer these questions.

Analysis 1: Development of Distributed Solar

Customer payback periods provide a useful metric to indicate the extent to which different solar policies
will affect the growth, or lack of growth, of distributed solar resources. Policies that lead to very short
customer payback periods will likely produce rapid growth in these resources, while policies that lead to
very long customer payback periods will likely result in little growth. Market penetration curves can be
used to estimate eventual customer adoption levels from customer payback periods. Changing a
customer’s payback period will impact how economically attractive distributed solar is, and thereby
affect how many customers ultimately adopt the technology.

! Synapse Energy Economics, Inc. Show Me the Numbers 1



Analysis 2: Cost-Effectiveness of Distributed Solar

Distributed solar can offer the electric utility system and society a host of benefits, ranging from avoided
energy and capacity costs to reduced impacts on the environment and greater customer choice. At the
same time, distributed solar may impose administration and integration costs on the utility system.
Many recent studies have assessed whether the benefits of distributed solar outweigh the costs. These
studies are most informative when they use clearly defined, consistent methodologies for assessing
costs and benefits.

The most relevant cost-effectiveness tests for evaluating distributed solar are the Utility Cost Test, the
Total Resource Cost Test, and the Societal Cost Test, which are based on the cost-effectiveness analyses
long applied to energy efficiency resources.

e The Utility Cost Test indicates the extent to which distributed solar will reduce total
electricity costs to all customers by affecting utility revenue requirements.

e The Societal Cost Test takes a broader look and indicates the extent to which distributed
solar will help meet a state’s energy policy goals such as environmental protection and
job creation, as well as reducing customer electricity costs.

e The Total Resource Cost Test, in theory, indicates the extent to which distributed solar
will reduce utility system costs net of the host customer’s costs. This test should be used
with caution, as it has some structural constraints that limit its usefulness.

Analysis 3: Cost-Shifting from Distributed Solar

Cost-shifting from distributed solar customers to non-solar customers occurs in the form of rate
impacts. Distributed solar can cause rates to increase or decrease due to changes in electricity sales
levels, costs, or both. A comprehensive rate impact analysis is the best way to analyze the potential for
cost-shifting from distributed solar.

When evaluating cost-shifting, it is important to analyze both long-

term and short-term rate impacts to understand the full picture. Because distributed solar
resources can create both
upward and downward
pressure on rates, the
resulting in short-term rate increases followed by long-term rate combined effect could

Often, the benefits of distributed solar are not realized for several
years, while a decrease in electricity sales occurs immediately,

decreases. Thus a short-term rate impact analysis will not fully result in in either a net
increase or decrease in

capture the impacts of distributed solar.
average long-term rates.

In their most simplified form, electricity rates are set by dividing the
utility class’s revenue requirement by its electricity sales. Thus rate
impacts are primarily caused by two factors:

1. Changes in costs: Holding all else constant, if a utility’s revenue requirement decreases,
then rates will decrease. Conversely, if a utility’s revenue requirement increases, rates
will increase. Distributed solar can avoid many utility costs, which can reduce utility

- Synapse Energy Economics, Inc. Show Me the Numbers 2



revenue requirements. Distributed solar can also impose costs on the utility system
(such as interconnection costs and distribution system upgrades).

2. Changes in electricity sales: If a utility must recover its revenues over fewer sales, rates
will increase. This is commonly referred to as recovering “lost revenues,” and is an
artifact of the decrease in sales, not any change in costs. Lost revenues should be
accounted for in the rate impact analysis, but not in the cost-effectiveness analysis.

Whether distributed solar increases or decreases rates will depend on the magnitude and direction of
each of these factors.! In very general terms, if the credits provided to solar customers exceed the
average long-term avoided costs, then average long-term rates will increase, and vice versa.

Summary of Analytical Framework for Assessing Distributed Solar Policies

The results of the three analyses described above can be pulled together into a single framework to
evaluate different distributed solar resource policies in an open, data-driven regulatory process. The
framework proposed here includes several steps that policymakers, regulators, or other stakeholders
can take to assess the implications of different distributed solar policies. These steps are summarized in
Table ES.1.

Table ES.1 Steps Required to Assess Distributed Solar Policies

Step 1 | Articulate state policy goals regarding distributed solar resources.

Step 2 | Articulate all the existing regulatory policies related to distributed solar resources.

Step 3 | Identify all of the new distributed solar policies that warrant evaluation.

Step 4 | Estimate the customer adoption rates under current solar policies, and new solar policies.

Step 5 | Estimate the cost-effectiveness of distributed solar under current policies and new policies.

Step 6 | Estimate the extent of cost-shifting under current solar policies, and new solar policies.

Step 7 | Use the information provided in the previous steps to assess the various policy options.

To facilitate understanding and decision-making, it is useful to summarize the results of the three
analyses in a single table. Table ES.2 provides an example of how the results could be summarized for
reporting and decision-making purposes.

The primary recommendation from this report is that regulators should require utility-specific analyses
of: (1) distributed solar development, (2) cost-effectiveness, and (3) cost-shifting impacts of relevant
distributed solar policies. This will allow for a concrete, comprehensive, balanced, and robust discussion
of the implications of the distributed solar policies.

1 Whether rates actually increase or decrease is also dependent upon a host of other factors not related to distributed solar.

n Synapse Energy Economics, Inc. Show Me the Numbers 3



Table ES.2 Summary of Hypothetical Results

I. Distributed Solar
Development

Customer 5-Year
Payback Penetration
Years %

2. Cost Effectiveness

Utility Net
Benefits

Total
Resource
Net
Benefits

$ Million

Societal
Net
Benefits

$ Million

3. Rate and Bill

Impacts
. Long-
'T:qg'chlt” Term Avg.
P Bill Impact
$/mo %

Policy |
Policy 2

Policy 3

$ Million |

Using the results of the analyses presented above, policymakers, regulators, or other stakeholders can

review the projected impacts of various policy options to determine what course of action is in the

public interest. Appropriate consideration of all relevant impacts will help decision-makers to avoid

implementing policies that have unintended consequences or that fail to achieve policy goals. The

results of such analyses can also help to determine the point at which certain distributed solar policies

should be reevaluated and modified over time.

Given that each jurisdiction has its own policy goals and unique context, the ultimate policy decision

reached may be different in each jurisdiction, even when based on the same analytical results.

Nonetheless, the framework articulated above will provide decision-makers with the ability to balance

protection of customers with overarching policy objectives in a transparent, data-driven process.

- Synapse Energy Economics, Inc.
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1. INTRODUCTION AND BACKGROUND

Distributed solar? can pose a challenge for policymakers, regulators, and consumer advocates as it can
reduce system costs over the long-run, but in some cases may also result in increased bills for non-solar
customers. This report is intended to provide a guide for decision-makers and other stakeholders who
seek to strike a balance between ensuring that cost-effective resources continue to be developed, while
avoiding unreasonable rate and bill impacts on non-solar customers.

Nearly every state in the nation has adopted net metering as a compensation mechanism for distributed
solar customers. However, jurisdictions across the country are beginning to reevaluate their distributed
solar policies. For example, in the first quarter of 2016, 22 states considered or enacted changes to net
metering policies (NCCETC 2016). While simple to administer (and simple to understand), concerns have
been raised that net metering may lead to unacceptable rate impacts on non-solar customers.

It is prudent to periodically review and modify distributed solar policies to

ensure that they continue to serve the public interest. To date, however, Regulators should strike a
many jurisdictions have developed or modified their policies in a balance between ensuring
that cost-effective
resources continue to be
developed, while avoiding
other customers. Without appropriate data-driven consideration of all unreasonable impacts on

piecemeal fashion, rather than based on a quantitative analysis of the
various impacts that distributed solar can have on the utility system and

relevant impacts based, decision-makers risk implementing policies that non-solar customers.
have unintended consequences or that fail to achieve policy goals.

This report provides a framework for helping decision-makers analyze distributed solar policy options
more comprehensively by evaluating three critical indicators:

o The likely customer adoption of distributed solar
e The cost-effectiveness of distributed solar
e The magnitude of cost-shifting to non-solar customers

Once the results of these analyses are available, decision-makers can evaluate their policy options to
determine what course of action will be in the best interest of customers as a whole by balancing the

protection of customers with development of distributed solar resources.?

Appendix A provides sample discovery questions designed to assist stakeholders obtain the key pieces of
information required for conducting the analyses recommended in this report. It is critical to have
accurate inputs, especially for avoided costs, to accurately estimate the impacts of distributed solar
policies. The answers to these questions will differ across jurisdictions, and thus the framework should
be applied using the best available information that is relevant to each jurisdiction.

2 We use the term “distributed solar” to refer to small solar photovoltaic (PV) systems that are located on the distribution
system. These systems generally take the form of rooftop PV operating behind the meter, but may also include installations
not sited at the point of use, such as community solar.

3 Regulators are tasked with implementing laws that have been adopted by the state legislature or executive branch. In some
cases utility regulators have a wide range of policy options; in other cases the options are dictated by the state government.

! Synapse Energy Economics, Inc. Show Me the Numbers 5



2. DISTRIBUTED SOLAR PoLicYy OPTIONS

A comprehensive analysis of distributed solar policy options should begin with an explicit articulation of
the jurisdiction’s energy policy goals. Such policy goals may include (a) reducing electricity costs, (b)
promoting customer control or choice, (c) reducing environmental impacts, and (d) promoting local jobs
and economic development. In addition, jurisdictions generally attempt to balance these goals with the
goal of avoiding or mitigating unreasonable cost-shifting to non-solar customers. These policy goals
should inform the selection of policy options related to distributed solar and the evaluation of their
impacts.

Policies that impact distributed solar include, but are not limited to: compensation mechanisms; rate
designs that directly affect the credits that solar customers receive; program enrollment level caps;
interconnection standards that govern the processes for connecting to the grid; and other policies
designed to reform long-term grid planning efforts such that higher penetrations of distributed solar can
be more easily accommodated and optimized on the grid. Regulators and policymakers can adjust these
policies to encourage balanced growth of distributed solar and to mitigate rate impacts. The table below
provides examples of the various types of policy options and supporting activities.*

Table 1. Distributed Solar Policy Categories

Policy Examples

Net metering, feed-in-tariff, value-of-solar tariff, renewable

Compensation energy certificates, rooftop lease payments, performance
Mechanisms . gY ! P pay 'P
incentives
. Fixed charges, demand charges, time-of-use rates, bypassable
Rate Design g & P

versus non-bypassable bill components

Up-Front Incentives and  Investment tax credits, sales tax exemptions, rebates, loans,

Financing grants
Interconnection and Expedited review, mandated time limits, zoning exemptions,
Permitting interconnection and permitting fees
Integration and Hosting capacity analyses, integrated resource planning,
Planning distribution system planning

. Customer up-front purchase, third-party ownership, utilit
Ownership . P P party P y

ownership and lease to customer, loans

Education, Training, Information, tools, workshops, online assistance, community
And Outreach outreach

4 Many residential and small commercial customers choose to lease their system or enter into a power purchase agreement
(PPA) with third-party solar developers. Therefore it may be important to understand how various policies affect these
developers, rather than only the host customers, when considering policy options.

! Synapse Energy Economics, Inc. Show Me the Numbers 6



In this report, we focus primarily on compensation mechanisms and rate

design for residential and small commercial solar customers.> Often In this report, we focus
compensation mechanisms and rate design work in tandem, such as primarily on
compensation

under net metering policies where a change in rate design can affect the i
mechanisms and rate

design for residential
particularly important policies for decision-makers to consider, as they and small commercial

net metering credit. Compensation mechanisms and rate design are

can impact the rate of adoption of distributed solar, the magnitude of any solar customers.
rate impacts on non-solar customers, and the extent to which utilities are
able to recover their allowed revenues.

2.1. Rate Design and Distributed Solar

The Purpose of Rate Design

When considering rate design modifications, it is important to keep in mind the core objectives of
electricity rates. In 1961, Professor James Bonbright set forth eight rate design principles, and distilled
these principles into the following three objectives:

1. The revenue-requirement or financial-need objective, which takes the form of a fair-
return standard with respect to private utility companies;

2. The fair-cost-apportionment objective, which invokes the principle that the burden
of meeting total revenue requirements must be distributed fairly among the
beneficiaries of the service; and

3. The optimum-use or consumer-rationing objective, under which the rates are
designed to discourage the wasteful use of public utility services while promoting all
use that is economically justified in view of the relationships between costs incurred
and benefits received (Bonbright 1961, 292).

The first objective seeks to ensure that utilities are able to recover sufficient revenues; the second
objective is focused on fairness of rates; and the third objective addresses efficient resource usage.

These three objectives are still as relevant today as they were in 1961, with one modification. Customers
are no longer only consumers; rather, they are increasingly also producers of a range of services, such as
energy generation, demand reduction, and even ancillary services. For this reason, the third objective
need not be limited to encouraging customers to consume electricity efficiently, but also to produce
electricity (and related services) efficiently. With this modification, Bonbright’s third objective also

> For simplicity, we assume that rate design and compensation mechanisms will affect the payback period for both third-party
developers and host customers who purchase their systems outright in a similar manner.

- Synapse Energy Economics, Inc. Show Me the Numbers 7



includes the primary objective of resource planning, namely the cost-effective procurement of

resources, including distributed solar.®

Rate Design as a Balancing Act

Regulators strive to protect the long-run interest of customers by overseeing the provision of reliable,

low-cost energy, while also ensuring that rates are fair, just, and reasonable. At its essence, ratemaking

requires a balancing of multiple interests, as the principles and objectives enumerated by Bonbright are

often in tension with one another.

The tension among ratemaking objectives
stems not only from the need to balance the
interests of different parties (utilities,
customer classes, and individual customers),
but also the need to recover historical
(embedded) costs while sending price signals
that drive efficient future investments by
affecting customer behavior.

In order to meet both of these objectives, rate
design should be informed by two different
types of analyses: embedded cost of service
studies and forward-looking resource plans.

Cost-of-service studies help to establish
relationships between utility costs and
customer consumption, and allocate historical
costs equitably by dividing the revenue

requirement among customer classes based on

Figure 1. Relationship Among Historical Costs, Future Costs, and
Rate Design

Customer
Behavior
Drives
Future Costs

Rates
Recover
Embedded
Costs

Rate Design
impacts
Customer
Behavior

each class’s contribution to past investments and operating expenses.

Once the revenue requirement for each class has been set, the focus shifts to minimizing future costs,

rather than simply recovering historical costs. Rates are designed to recover a set amount of revenues,

but also to provide customers with appropriate price signals to help customers make efficient

consumption and investment decisions (including investments in distributed solar) that will help

minimize long-term system costs.

The connection between the two primary analyses and rate design can be summarized as follows:

e Cost-of-Service Studies: The primary purpose of embedded cost-of-service studies is to
identify how to allocate the revenue requirement across the rate classes. The revenue
requirement is largely the product of historical investments made by the utility to serve

® This discussion assumes continuation of the current electric utility structure. However, the electric utility model is beginning
to evolve to accommodate a more distributed, customer-centric future, and to better address policy goals such as reducing
greenhouse gas emissions. As such, the primary objectives of rate design may need to evolve as well.

- Synapse Energy Economics, Inc.
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various customer classes. While cost-of-service study results can be used to inform rate
design, the cost-of-service study should not be used to dictate rate design, as it does not
account for future costs.

e Resource Planning: The purpose of resource planning is to identify those future
resources and investments that are cost-effective and in the public interest. Cost-
effective resources may include distributed energy resources as an alternative to supply-
side resources or investments in traditional utility infrastructure. This exercise provides
an indication of how much distributed solar should be implemented or encouraged by
the utility to cost-effectively meet future resource needs and minimize long-term
system costs.

Rate design plays an important role in the procurement of distributed solar. Unlike traditional supply-
side resources, distributed resources are rarely procured directly by a utility. Instead, distributed
resources are generally installed by individual households and business owners. Since rate design can
significantly impact the economics of distributed solar systems installed by such utility customers, it
serves as a primary tool for stimulating or stifling the installation of additional distributed solar on the
utility system.

Figure 2 summarizes the connections among cost of service studies, rate design, and resource planning,
as well as the different types of costs considered in each analysis.

Figure 2. The Role of Cost of Service Studies, Rate Design, and Resource Planning

Cost of Service Studies Rate Design Resource Planning
*Goal: Cost allocation *Goal: Revenue recovery, *Goal: Low-cost, reliable,
. . equity, efficient price signals safe, electric service
eCosts: Based on historical quity P g
(embedded) costs eCosts: Addresses both eCosts: Based on future costs
. historical and future costs .
eConnection: Used as one eConnection: Influenced by
input to rate design, but eConnection: Price signals customer distributed solar
does not dictate rate design. influence distributed solar and energy usage decisions.
and energy usage decisions Also may influence future

customer investment

# - decisions.

Rate Design Options

The underlying rate design has a direct impact on the financial viability of distributed solar, as it
determines the degree to which customers can reduce their electricity bills by investing in distributed
solar. For example, increasing the fixed charge reduces the variable rate, effectively also lowering the
net metering compensation rate, and can thereby substantially reduce incentives for customers to
install distributed generation (Whited, Woolf, and Daniel 2016).

Fixed charges are not the only form of rate design that can impact the adoption of distributed solar.
Other rate designs include:

e Demand charges: A demand charge is typically based on a customer’s highest demand
during any one period (e.g., hour or 15-minute period) of the month. A demand charge

! Synapse Energy Economics, Inc. Show Me the Numbers 9



often reduces the economic attractiveness of solar, since solar generation generally
reduces demand much less than it reduces energy consumption.”

e  Minimum bills: A minimum bill is similar in appearance to a fixed charge, but only
applies if the customer’s bill would otherwise be lower than the minimum threshold.
While a minimum bill ensures that all customers contribute a certain amount to the
system each month, it does not distort the variable rate.

o Time-of-use rates: Time-of-use rates are a simple form of time-varying rate that has
been used for decades. A time-of-use rate assigns each hour of the day to either a peak,
off-peak, or shoulder period. The energy rate is then set to be highest during the peak
hours and lowest during off-peak hours to better reflect the actual underlying costs of
providing electricity during those hours. A time-of-use rate can be designed in many
ways. The particular design of the rate can either increase or reduce the economic
attractiveness of distributed solar.

o Inclining block rates: These rates are set so that the first block of kilowatt-hours
consumed each month (e.g., the first 200 kWh) is billed at a lower rate than the next
block of consumption. Because net metering offsets a customer’s highest block of
consumption first, inclining block rates can increase the value of distributed solar to the
host customer.

o Declining block rates: Declining block rates are the inverse of inclining block rates.
Under a declining block rate, the electricity price declines as energy consumption
increases. These rates are rare for small residential and commercial customers, but are
more common for large commercial and industrial customers.

2.2. Compensation Mechanisms for Distributed Solar

Net Metering

Net metering allows customers to offset their electricity consumption with their system’s generation on
a one-to-one basis at the end of a month. Net metering is currently the most common method of
compensating solar generation for the individual home or business, having been adopted in more than
43 states (NCCETC 2016). It has traditionally been applied to customers who install solar on their
premises, but is increasingly also being applied to community solar options (discussed below).

There are many varieties of net metering, and the specific program design parameters can impact the
economic viability of distributed solar. These parameters may include:

e Program caps: A cap closes the net metering program to new customers once a certain
penetration level has been reached.?

7 Solar customers frequently have high usage during non-daylight hours when solar panels are not producing energy. In
addition, an hour of cloud cover during daylight hours can cause a solar customers’ usage from the grid to spike temporarily.

8 Caps can be expressed in different ways, such as a percent of historical peak demand, a percent of electricity sales, or in
absolute megawatts of capacity.
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e System size limits: Often net metering is limited to customers with relatively small
systems, such as under 500 kW. In some cases, the size limit is based on the host
customer’s load.

e Treatment of excess generation: Programs vary in terms of how excess generation is
compensated (i.e., when total generation exceeds consumption for the month), and
whether bill credits can be rolled over to the next month.

e Underlying rate design: Residential customers are typically billed through a combination
of fixed charges and variable rates (in cents/kWh), with net metering compensation
provided at (or close to) the variable rate.? Changes to the variable rate can affect the
ability of customers to offset their bills with net metering credits.

Buy All/Sell All

A buy all/sell all tariff requires that all energy consumed by the host customer be purchased from the
utility at the retail rate, and all generation be sold to the utility at a different rate. This rate may be

higher or lower than the retail rate. Two variants of the Buy All/Sell All approach are value-of-solar

tariffs and feed-in tariffs, described in the following sections.®

Value-of-Solar Tariffs

Value-of-solar tariffs are an alternative to net metering that is based on the estimated net value
provided by solar generation. This net value can be estimated in many different ways, but the key
elements typically include:

e Avoided energy costs (e.g., fuel, O&M)

e Avoided capacity (generation, transmission, and distribution)

e Avoided line losses

e Avoided environmental compliance costs

e Costs imposed on the system (integration costs, administrative costs)

An example of a jurisdiction that uses a value-of-solar tariff is Austin Energy. The value-of-solar rate is
set on an annual basis through Austin Energy’s budget process (City of Austin 2016). Because it is set

3 This compensation rate does not include certain non-bypassable riders or fees.

10 some concern has been raised that a Buy All/Sell All mechanism may create tax liabilities for solar owners. Under a Buy
All/Sell All mechanism, the owner may be viewed as engaging in the sale of electricity, the proceeds of which could
constitute gross income.
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annually, the rate fluctuates from year to year but is generally in the range of 10 to 12 cents per
kilowatt-hour.

The methodology used by Austin Energy to Figure 3. Austin Energy's Value-of-Solar Tariff 2012 and 2014
calculate the value-of-solar rate was originally
set in 2012 and considers loss savings, energy $0.12 P
Environmental
savings, generation capacity savings, fuel price
. . . . Avoided T&D
hedge value, transmission and distribution e
. ‘ } . $0.10 Avoided Avoided
capacity savings, and environmental benefits Generaton Environmental
apacity
(Karl Rabago et al. 2016). A
Avoided Losses .
$0.08 Avoided T&D
Value-of-solar tariffs may be applied in
r= Avoided
different ways. One method is to require that B Generation
;_ Capacity
all energy consumed be purchased from the 8 $0.06
wvr Avoided Losses
utility at the retail rate, while all generation is
sold to the utility at the value-of-solar rate (i.e., . PP
. 0.04
a buy-all/sell-all arrangement). Under this 2nd O&M
option, no netting is permitted. Other Avoided Fuel
and O&M
jurisdictions may apply the value-of-solar rate $0.02
only to excess generation, while any
generation consumed behind the meter is
. . $0.00
effectively netted at the retail rate. o012 S014

Feed-In Tariffs

A feed-in tariff (FIT) operates similarly to a value-of-solar tariff, in that it compensates solar generation
at an administratively set value. However, the goal of a FIT differs from a value-of-solar tariff in that a
FIT is designed explicitly to provide an incentive to install distributed generation. Typically FITs are used
to stimulate early adoption of new technologies that would otherwise be cost-prohibitive for most
customers. As such, the FIT is generally designed to allow distributed generation customers to earn a
reasonable return on their investment.!!

Instantaneous Netting

Net metering has traditionally netted energy consumption against generation at the end of a billing
cycle (e.g., on a monthly basis). However, recently some jurisdictions (such as Hawaii) have begun to
experiment with what can be called “instantaneous netting.” Under this approach, any generation
consumed on-site offsets grid-supplied energy at the retail rate on a near-instantaneous basis, while any
generation exported to the grid is credited at a lower rate (Public Utilities Commission of Hawaii 2015).

11 175 have been widely used in Europe (particularly Germany), and on a more limited basis in the United States. For example,
Portland General Electric (PGE) solar customers can choose a feed-in-tariff option called the Solar Payment Option, which
currently compensates customers at a rate much higher than the net metering rate for a period of 15 years. See: PGE, “Solar
Payment Option - Install Solar, Wind & More,” https://www.portlandgeneral.com/residential/power-choices/renewable-
power/install-solar-wind-more/solar-payment-option.
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This rate structure encourages customers to use as much of their generation as possible (or store it in
batteries), rather than pushing it onto the grid.

2.3. Additional Options

Community Solar and Other Virtual Net Metering

Community solar allows customers who are unable to install solar PV on their homes or businesses to
benefit from the solar energy produced by an off-site solar installation (also called “virtual net
metering”).12 Customers typically purchase a subscription or “share” of the electricity generated by the
installation. Subscribers then receive both a charge for the subscription and a credit for the reduction in
grid-supplied energy that are applied to their electricity bill. This credit may be equal to, more than, or
less than the retail rate. Community solar installations have the advantage of removing some barriers to
entry for installing solar systems. For example, community solar expands access to renters or other
customers without suitable roof space, and to customers who have limited access to financing.

While community solar installations are typically much larger than the average residential system,
smaller forms of virtual net metering are possible. In Massachusetts, a hybrid between large community
solar arrangements and traditional net metering exists whereby an individual host customer can share
his or her net metering credits with other customers who take service from the same utility (Public
Utilities Commission of Hawaii 2015).

Renewable Energy Certificates and Solar Renewable Energy Certificates

Renewable Energy Certificates (RECs) and Solar Renewable Energy Certificates (SRECs) offer customers a
financial incentive to install distributed solar by allowing customer generators to sell their RECs or SRECs
to electricity suppliers, who are required by law to purchase a minimum number each year to comply
with the jurisdiction’s Renewable Portfolio Standard (RPS) or its RPS solar carve-out.

Currently 29 states and the District of Columbia have RPS policies, while a smaller number of states have
solar carve-outs. States with solar carve-outs and an SREC market include Massachusetts, New Jersey,
New Hampshire, Pennsylvania, Ohio, Delaware, Maryland, and the District of Columbia (Barbose 2016).
However, many other states in the eastern United States are able to participate in the SREC markets of
states with solar carve-outs (SREC Trade 2016). Some states have adopted an approach that does not
use separate SRECs, but provides solar customers with a multiplier on their RECs (Barbose 2016). For
example, a state might provide 3 kWh worth of RECs for 1 kWh generated by distributed solar.

Basic market forces determine the value of a REC or SREC: the supply of credits is determined by the
guantity of eligible resources currently in place, while demand is determined by the jurisdiction’s
requirements. SREC prices are generally higher than RECs, and therefore tend to provide a stronger

12 \je note that the terms “community solar” and “virtual net metering” are used quite inconsistently across the country and
also go by different names. For example, community solar may also be called “shared solar,” “community distributed
generation,” or “neighborhood net metering.”
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financial incentive for customers to install solar technologies. However, both SREC and REC markets can
be volatile, thereby increasing the financial risk for solar customers.

Loans, Rebates, and Tax Credits

Jurisdictions may provide a variety of incentives that reduce the up-front costs of installing solar
technologies, including subsidized loans, up-front rebates, and tax credits. For example, the federal
government currently offers a 30 percent investment tax credit for residential customers who install
solar.'3 In addition, many jurisdictions offer installation rebates, such as Austin Energy’s rebate of

$0.70/watt (equivalent to approximately 18 percent of the current median cost per watt).4

13 Eor more information, see the U.S. Department of Energy webpage at http://energy.gov/savings/residential-renewable-
energy-tax-credit.

14 Eor more information, see Austin Energy’s website at http://austinenergy.com/wps/portal/ae/green-power/solar-
solutions/solar-pv-systems/current-solar-incentive-levels.
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3. DEVELOPMENT OF DISTRIBUTED SOLAR

A comprehensive analysis of distributed solar policy options should begin with an explicit articulation of
state energy objectives and how they relate to distributed solar. The table below provides examples of
such objectives and their relationship to distributed solar.

Table 2. Policy Objectives and Distributed Solar

Objective Relationship to Distributed Solar Policy Choice

Reducing Electricity  To the extent that distributed solar reduces system electricity costs

Costs and Risk and diversifies energy sources, decision-makers may seek to promote
distributed solar. For example, distributed solar may be part of a
strategy to relieve grid congestion and reduce the need for significant
and expensive upgrades of the distribution system.

Environmental Regulators may wish to encourage development of distributed solar to

Goals reduce carbon emissions or achieve other state environmental goals.

Promoting A state may wish to support the ability of all customer classes to self-

Customer Control generate as an alternative to purchasing electricity from the utility and

or Choice to reduce their energy bills. Distributed solar can help to achieve these
objectives.

Employment States may promote distributed solar as a means to increase the

number of jobs, particularly those in the clean energy sector.

Protect Non-Solar Distributed solar may increase rates and bills for non-solar customers.

Customers from The impact on low-income customers may be of particular concern. To
Unreasonable Rate  address this, states may wish to limit the total penetration of
Impacts distributed solar, or develop alternatives, such as community solar and

low-income solar programs, that allow the benefits to be spread
across a greater number of customers.

A policy decision such as a change in rate design will impact the economics of investing in distributed
solar, and thus customers’ willingness to adopt the technology. Changes in the adoption of distributed
solar will in turn affect how much distributed solar is ultimately developed in the jurisdiction, which may
have two key impacts on utility customers:

1. |If distributed solar results in cost-shifting to non-solar customers, higher solar
penetration levels will likely exacerbate this effect.

2. If distributed solar helps to reduce electricity rates and meet a state’s solar energy
objectives, higher penetration levels will benefit customers over the long term.

For these reasons, decision-makers should consider current penetration levels, as well as how a policy
change will affect future customer adoption rates. Jurisdictions that are currently experiencing low
adoption rates may want to consider how solar penetration may change under different policies,
particularly if technology costs continue to fall (discussed more below).

n Synapse Energy Economics, Inc. Show Me the Numbers 15



Customer adoption rates are influenced by many factors, ranging from the ease of the interconnection
process to the availability of loans or the ability to lease a solar system from a third-party installer. In
this report, however, we focus solely on the compensation mechanisms and rate designs that influence
customers’ willingness to install distributed solar.> For simplicity, we assume that the customer is
purchasing a system up-front, as not all states currently allow third-party leases or power purchase
agreements.

To estimate the impact of a policy on a customer’s willingness to purchase and install a solar system, it is
first necessary to calculate the payback period for a typical solar customer under the current policy and
the new policy.

Estimating the Payback Period

The steps to estimate the simple payback period for a single-owner solar installation are as follows:

1. Reference Bill: Calculate the customer’s average monthly bill under the current rate
structure and incentives without distributed solar, to provide a point of reference.'®
This will require knowing, at a minimum, the average annual consumption level (in
kilowatt-hours) for a typical customer. For more sophisticated rate structures (such as
time-of-use rates or demand charges), it may be necessary to know a range of
customers’ load profiles in order to accurately estimate the reference monthly bill(s).
Estimates of future grid-supplied electricity prices will also be helpful.

2. Upfront System Costs: Estimate the cost of installing a solar array, using the most up-
to-date prices and incentive levels possible. Online tools and datasets such as the
Lawrence Berkeley National Lab’s “Tracking the Sun” reports,*” and the National
Renewable Energy Laboratory’s (NREL) Open PV Project!® can help to inform this
estimate.’® Include any up-front incentives that a customer would receive, such as the
federal tax credit, which allows residential taxpayers to deduct a percent of the cost of
installing a solar energy system from their federal taxes.?°

1511 other words, the discussion that follows assumes that the interconnection process, permitting process, and other factors
do not present unreasonable barriers to customers. If this is not the case, then estimates of customer adoption should be
adjusted accordingly.

16 ¢ electricity rates are projected to increase faster than inflation, an escalation rate should be applied to the reference bill for
each year of the analysis.

17 | awrence Berkeley National Lab’s reports catalogue the trends in the installed price of residential and non-residential solar
systems installed in the United States. These reports can be found at trackingthesun.lbl.gov.

18 The National Renewable Energy Laboratory maintains a database of installed costs of distributed solar by year at
https://openpv.nrel.gov/search.

¥, 2015, the median installed price was $4.10 per watt for residential systems, $3.50 per watt for non-residential systems
less than or equal to 500 kW in size, and $2.50 per watt for non-residential systems larger than 500 kW (Barbose and
Darghouth 2016, 20).

20 This tax credit will remain at 30 percent through 2019, but is then scheduled to be reduced to 26 percent in 2020 and 2021,
and 22 percent in 2022 (U.S. Department of Energy 2016).
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3. Ongoing System Costs: Estimate the annual costs to maintain the system. NREL
provides current estimates of operations and maintenance costs on its website.?!

4. Generation: Quantify the anticipated solar generation (in kWh) for a typical solar array
using a tool such as the NREL’s PV Watts calculator.??

5. Bill Savings: Using the solar generation profile estimated in Step 4, calculate the annual
electricity bill for a customer with distributed solar, and then compare this to the
annual electricity bill for a similar customer without distributed solar (as calculated in
Step 1) in order to quantify the annual bill savings.

6. Other Benefits: Estimate any additional annual financial incentives that a customer
would receive for the electricity produced by their system such as production incentives
or the projected value of renewable energy credits (if applicable). Do not include the
value of up-front incentives that reduce the initial cost of the solar system, as these
were included in Step 2.

7. Simple Payback Period: If the benefits and costs are assumed to not vary from year-to-
year, the system costs can simply be divided by the annual benefits to derive the simple
payback period. Otherwise, incrementally subtract the annual benefits (the sum of bill
savings calculated in Step 5 and other incentives calculated in Step 6) from the system
costs (the sum of Step 2 and Step 3) to determine how many years will be required for a
customer to recoup his or her investment.?3

Once the simple payback period under the current rate structure and incentive levels is calculated,
repeat the process for any new policies under consideration.

It should be noted that there are many factors that can influence the payback period and can change
quickly. For example, the installed cost of solar has fallen dramatically in recent years, as shown in the
figure below, based on data from Lawrence Berkeley National Laboratory (Barbose and Darghouth
2016). The price of electricity also may change significantly from year to year, particularly for
jurisdictions where energy prices are driven by volatile oil or natural gas markets. For this reason,
payback periods (and the penetration levels that rely on payback period estimates), should be updated
periodically.

2L 2016, the estimated annual O&M costs for small residential systems was $21 (NREL 2016).

22 The National Renewable Energy Laboratory’s PV Watts calculator estimates the energy production from distributed solar
systems throughout the world. The calculator also contains some cost information. http://pvwatts.nrel.gov/.

B The simple payback period calculation does not involve discounting.
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Figure 4. Median Residential Installed Price of Solar
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Source: Barbose and Darghouth, Tracking the Sun IX, August 2016.

Customer Adoption Levels

The next step is to estimate the customer adoption levels for a certain payback period based on market
penetration curves and estimates of the eligible population. Market penetration curves estimate the
percentage of customers who will ultimately adopt a technology as a percentage of the total customers
who would and could potentially install the technology.

Many customers cannot adopt solar because they have unsuitable roofs or do not own their residences.
Other customers may have no interest in installing solar panels, even if they were provided for free. For
example, out of 1,000,000 residential customers, perhaps only 650,000 customers own their residence
and have roofs with little shading and an orientation suitable for solar. Thus the population of eligible
customers should be determined for each jurisdiction based on surveys, home ownership rates, and
analyses of rooftop suitability. If jurisdiction-specific estimates are not available, one can develop rough
estimates from existing resources. One useful source is NREL, which developed estimates of the
percentage of small buildings suitable for rooftop solar in each ZIP code using data on roof shading, tilt,
and azimuth (Gagnon et al. 2016).

Once the population of eligible customers has been established, market penetration curves can be
applied to estimate the proportion of the eligible population that would adopt solar based on a certain
payback period. Ideally these curves will be developed for a particular jurisdiction using surveys. If this is
not possible, curves developed for other jurisdictions can be used. For example, the graph below shows
maximum market penetration curves for the residential and commercial classes as estimated by
Navigant Consulting (Paidipati et al. 2008), the Energy Information Administration’s National Energy
Modeling System (NEMS) (EIA 2004), NREL (Sigrin and Drury 2014), and R.W. Beck (2009).
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Figure 5. Market Penetration Curves from the Literature
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As demonstrated by Figure 5, estimates of market penetration can vary significantly based on what
underlying data are used to estimate the curves and when the estimate was made. Such penetration
curves may need to be adjusted over time as market factors change or as better data on customer
adoption rates becomes available. These market penetration curves assume that there are no other
substantial barriers to solar adoption (such as interconnection barriers, program caps, etc.). Moreover, it
is unclear what effect alternative solar financing models (such as third-party leases) have on these
curves. For this reason, we recommend that each jurisdiction conduct its own survey of customer
willingness to adopt solar under different arrangements (including both customer ownership and third-
party leases).

The market penetration curves recently adopted by NREL for its dSolar model (Sigrin et al. 2016) are
approximated in the figure below. Using NREL's market penetration curves in Figure 6, a 15-year
payback would be expected to result in 12 percent of possible residential customers being willing to
purchase and install distributed solar, and 1 percent of possible commercial and industrial customers
being willing to purchase and install distributed solar. It should be noted that the willingness of
customers to adopt solar based on simple payback periods may not lead to actual project
implementation if other types of barriers exist. For example, Navigant estimates that adoption levels
may be reduced by as much as 60 percent if widespread interconnection challenges exist that create
significant cost increases or result in project delays or cancellation (Paidipati et al. 2008, 10). On the
other hand, if attractive financing options are available, actual penetration rates may be higher than
those estimated based on payback periods.
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Figure 6. Maximum Market Penetration Curves adopted by NREL
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Sigrin 2016.

Assuming that significant other barriers to installing distributed solar are not a factor, the penetration
levels indicated by market penetration curves can be expressed as penetration levels for each rate class.
They can also be converted to penetration as a percent of system peak demand or of energy sales.
These expected penetration levels should be estimated for each policy option under consideration, as
they are used to determine the net benefits provided by each policy option (described in the next
section).

However, it is important to remember that the payback period is likely to change from year-to-year, and
therefore the ultimate penetration of distributed solar estimated this year may be markedly different
than an estimate made five years from now. To address this, policymakers may instead want to estimate
the near-term penetration level (e.g., five years in the future), and revisit the estimate every few years.

To determine the likely penetration level in five years, rather than the ultimate penetration level, an
expected adoption trajectory is required. New technology adoption often follows an “S-curve,” which
can be specified using the Bass Diffusion Model (Bass 1969). Under this model, growth begins slowly,
enters into a rapid growth phase, and then begins to slow as it nears market saturation (i.e., the
maximum percentage of the population that might ultimately adopt the product). A hypothetical S-
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curve for distributed solar is shown in Figure 7, below, based on the assumption that the market will

saturate at 20 percent over a 10-year period.?*

Figure 7. Hypothetical S-Curve of Distributed Solar Adoption
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Note: Assumes that market saturation at 20 percent occurs in 10 years.

However, such adoption trajectories should be viewed as a snapshot in time, based on current payback
periods. As factors influencing the payback period change (such as the price of solar panels), the market
saturation level will also change. This key factor is not captured by the original Bass Diffusion Model, and
thus the model must be re-estimated as financial parameters change, or an alternative model should be
used (Chandrasekaran and Tellis 2007).

24 The shape that the S-curve takes will vary based on parameters referred to as the “coefficient of innovation” and the
“coefficient of imitation.” Further research is required to accurately specify these parameters.
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4. DISTRIBUTED SOLAR COST-EFFECTIVENESS

The basic premise of cost-benefit analysis is simple: All of the relevant costs of a resource are forecasted
over a long-term planning horizon, along with all of the relevant benefits (otherwise referred to as the
avoided costs). If the cumulative present value of the benefits outweighs the cumulative present value
of the costs, the resource is considered cost-effective.>> However, the magnitudes of the benefits and
costs can vary considerably depending upon which costs and benefits are relevant. Several different
cost-effectiveness methodologies are used to determine which costs and benefits are included in the
analysis, as discussed in the section on cost-effectiveness tests below.

4.1. Costs and Benefits

Distributed solar can offer the utility system and society a host of benefits, ranging from avoided energy
and capacity costs, to reduced environmental impacts. At the same time, distributed solar may impose
administration and integration costs on the system. Table 3 lists many of the most frequently quantified
benefits and costs.

Table 3. Potential Distributed Solar Costs and Benefits

Benefits

Avoided Energy Costs

Avoided Generation Capacity Costs
Avoided Losses

Avoided Transmission & Distribution Costs
Avoided Environmental Compliance Costs
Avoided Ancillary Services

Reduced Risk

Environmental Benefits

Costs

Administration costs
Interconnection Costs

Distribution System Upgrades

Participant Costs

It is important to note that the costs and benefits may vary greatly over time, due to changes in
penetration levels and changes in avoided costs (such as changes in the price of natural gas). For
example, distributed solar penetration of less than 5 percent may impose only very small administrative
and integration costs on the system. However, penetration levels of 20 percent or more may impose
significant costs on the system, stemming from the need to upgrade distribution system equipment to
handle large amounts of solar generation. Another cost could be the need to install distributed
generator visibility and control devices. For this reason, it is recommended that avoided costs be re-

25 \Where costs and benefits are difficult to quantify, reasonable approximations should be used until more detailed
information is available (Woolf et al. 2014).
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evaluated periodically, particularly if penetration levels are growing quickly, or if fuel prices are changing
rapidly.

4.2. Cost-Effectiveness Tests

Distributed solar studies generally use cost-effectiveness methodologies that are based on, or at least
consistent with, the methodologies that are commonly used for assessing energy efficiency cost-
effectiveness. Five cost-effectiveness tests have long been used to analyze energy efficiency’s costs and
benefits from various perspectives. These tests are based on the California Standard Practice Manual
(California Public Utilities Commission 2001).

In recent years, however, these tests have been subject to much debate. Many jurisdictions, including
California, have been wrestling with questions regarding which of these tests should be used for
evaluating energy efficiency and how. In response to this challenge, the National Efficiency Screening
Project was formed several years ago to help improve the way that jurisdictions analyze the cost-
effectiveness of energy efficiency resources (NESP 2014). NESP is currently in the process of preparing a
National Standard Practice Manual to provide guidance on energy efficiency cost-effectiveness practices
(National Efficiency Screening Project Forthcoming).

The main point from this debate on energy efficiency cost-
effectiveness, for the purpose of this study, is that it is essential to It is essential to

understand precisely what information each test can provide, and what understand precisely what
information each test can

that information indicates regarding the cost-effectiveness of provide, and what that

distributed solar resources. Each of the tests has advantages and information indicates
limitations that must be considered when applying them. The following regarding the cost-
subsections describe the information that each of the tests can effectiveness of distributed

solar resources.
provide; and Section 4.3 describes what that information means for

understanding the cost-effectiveness of distributed solar resources.

The Utility Cost Test?®

The purpose of the Utility Cost Test is to indicate whether a resource’s benefits will exceed its costs from
the perspective of the utility system. It does not, as the name implies, represent the perspective of the
utility in terms of utility management or utility investors. It instead represents the perspective of the
utility system. In other words, the Utility Cost Test represents the perspective of utility customers as a
whole.

The Utility Cost Test should include all utility system costs that impact revenue requirements when
additional distributed solar is added to the system. The utility system costs are comprised of all costs
that the utility must recover from customers, such as net metering administration costs, interconnection
costs beyond what is borne by the customer, and distribution system upgrades.

26 This test is also referred to as the “Program Administrator Cost Test.”
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It is important to note that certain utility system costs—such as the cost of complying with an RPS or
solar carve-out—are not incremental costs imposed by additional distributed solar, and should therefore
not be included. The costs associated with such compliance (e.g., SRECs) occur as the result of the
state’s decision to create an RPS solar carve-out. These costs would be incurred by the utility regardless
of whether additional distributed solar is implemented (assuming
that the utility would have to procure the solar from the market or
pay an alternative compliance fee). As such, SRECs do not get

One key limitation of the
counted as a cost or benefit under the Utility Cost Test.?’ Utility Cost Test is that it

does not reflect the extent

The Utility Cost Test should also include all utility system costs that to which distributed solar

are avoided by the distributed solar resource, including avoided resources will achieve
energy costs, avoided generation capacity, market price suppression energy policy goals
(beyond the goal of

effects, avoided transmission and distribution costs, avoided line .
reducing cost).

losses, and avoided environmental compliance costs.

The key advantage of the Utility Cost Test is its simplicity; it

indicates how distributed solar resources will affect electric utility costs to all customers as a whole. It is
the methodology that utilities have used for years to assess the costs and benefits of electricity resource
investments, and is the primary criterion for assessing costs and benefits in the context of integrated
resource planning.

One key limitation of the Utility Cost Test is that it does not reflect the extent to which distributed solar
resources will achieve energy policy goals (except for the goal of reducing costs). Most jurisdictions
establish distributed solar policies for the explicit purpose of increasing fuel diversity and independence,
reducing environmental impacts, and increasing local jobs and economic development. The Utility Cost
Test, by design, does not reflect these types of benefits.

The Total Resource Cost Test

The purpose of the Total Resource Cost (TRC) Test is to indicate whether the benefits of distributed solar
resources will exceed their costs from the perspective of the utility system and the host solar customer.
This test, in theory, includes all costs and benefits of the Utility Cost Test, plus all costs and benefits to
solar customers. Customer costs include all equipment, installation, and maintenance costs for the
distributed solar facility, or solar lease payments (if applicable). The benefits include any benefits
experienced by the solar customer (beside the benefits of reduced bills).?® In theory, these non-bill
customer benefits could reflect customer benefits such as reduced environmental impacts. In practice,

27 The question of whether or not a jurisdiction’s RPS policy or solar carve-out is cost-effective and whether it should be
pursued should be studied separately. For the purposes of this report, such policies are taken as a given and must be
complied with in some manner.

28 By design, the TRC Test includes the benefits (i.e., avoided costs) of the utility system. Customer bill reductions should not be
included as a benefit in this test, because that would double-count some of these avoided costs. The Participant Cost Test is
used to more specifically account for solar customer bill savings.
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these non-bill benefits to solar customers are rarely properly estimated and included in solar cost-

effectiveness analyses.?®

The main advantage of the TRC Test is that it provides more comprehensive information than the Utility
Cost Test, by including the impacts on participating customers. In this way the “total cost” of the
resource is reflected in the test, regardless of who pays for those costs.

However, the TRC Test might not accurately capture the benefits to solar customers. The primary
benefits to the host solar customer are in the form of customer bill savings, but the TRC Test does not
include customer bill savings; instead the test includes avoided utility system costs. In those jurisdictions
where retail rates (which determine customer bill savings) are different from utility avoided costs, this
test will not accurately capture the impact on solar customers.

Further, in practice the TRC Test does not account for the non-bill benefits to solar customers. Since
many solar customers install solar facilities for the purpose of reducing their environmental impact, this
could lead to a significant understatement of the benefits in the TRC Test.

Because of these two limitations, the TRC Test might not represent the impacts on the utility system and
the solar customers, as it purports to do. Instead, it would be more accurate to describe the TRC Test, as
it is typically applied, as a limited version of the Societal Cost Test, because it includes the total resource
costs, but not necessarily the total resource benefits.

The Societal Cost Test

The purpose of the Societal Cost Test is to indicate whether the benefits of distributed solar resources
will exceed their costs from the perspective of society as a whole. This test should include all the costs
and benefits of the Total Resource Cost Test, plus additional costs and benefits on society. The primary
costs and benefits that are included in this test, when it is applied to distributed solar resources, are the
environmental impacts and the net impacts on jobs and economic development.

The main advantage of the Societal Cost Test is that it provides the most comprehensive picture of the
total costs and benefits of a distributed solar resource. Further, it is the only test that accounts for the
benefits associated with a jurisdiction’s energy policy goals (beyond the goals of reducing utility system
costs or solar customer costs).

The main limitation of the Societal Cost Test when used for utility

resource planning is that it might place too much emphasis on societal The Societal Cost Test is
impacts if it is the only test considered. If the societal impacts of the only test that fully
distributed solar resources are particularly high relative to the utility accounts for a jurisdiction’s

. . . . energy policy goals
system costs and benefits, this test might place undue emphasis on (beyond the goal of
achieving energy policy goals over the goal of reducing electricity reducing costs).

system costs. Another limitation of the Societal Cost Test is that it can

29 Some states have modified the TRC test to include a value for non-energy benefits.
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be difficult to fully implement, as many externalities are difficult to fully monetize.

The Rate Impact Measure Test

The purpose of the Rate Impact Measure (RIM) Test is to indicate whether distributed solar resources
will increase or decrease electricity rates (i.e., prices). This test is sometimes used to indicate the
impacts on non-solar customers, because these customers might experience rate impacts as a result of
generation from distributed solar facilities. However, as explained more below, the RIM Test has several
fundamental flaws and should not be used to evaluate rate impacts. Instead, a more comprehensive
rate and bill impact assessment should be performed (as discussed in the following chapter).

Under the California Standard Practice Manual, the RIM Test includes the same costs and benefits
included in the Utility Cost Test, plus the addition of “lost revenues.” Lost revenues are caused by the
reduced electricity consumption of solar customers, and are equal to the amount of revenues that
utilities need to recover from non-solar customers in order to recover the fixed costs embedded in
electricity rates.3® However, these lost revenues are simply an artifact of recovering the same amount of
revenues over fewer sales, and are not a new cost to the utility system.

The main (and only) advantage of the RIM Test is that it indicates whether a resource will increase or
decrease electricity rates on average over the long term. Unfortunately, it fails to provide other useful
information regarding rate and bill impacts.

One of the main limitations of the RIM Test is that it conflates cost-
effectiveness and cost-shifting. These are two separate effects that can The main limitation of the

only be fully understood with separate analysis. Cost-effectiveness RIM Test is that it conflates
cost-effectiveness with
cost-shifting. These are
two separate effects that

analyses should include only future costs, and should seek ways to
minimize those future costs (along with achieving other policy goals).

The RIM Test includes lost revenues, which are a result of historical can only be fully
costs (i.e., sunk costs) that are embedded in electricity rates. These understood with separate
analysis.

costs would exist with or without distributed solar, and therefore are
not a new cost to the utility system caused by distributed solar.

Combining future costs and historical costs in one test makes it difficult to understand either cost-
effectiveness or cost-shifting. It is also inconsistent with standard microeconomic theory, which requires

that sunk costs not be included in cost-effectiveness analyses.3!

Further, the RIM Test does not provide the information that utilities and regulators need to assess the
magnitude of rate impacts caused by distributed solar resources. This test simply indicates whether
rates will increase or decrease as a result of these resources. A RIM Test might result in a benefit-cost
ratio of 0.9, for example, but this does not provide any indication of whether the rate impact is

30 The lost revenues include the costs associated with historical investments in electricity infrastructure, including a financial
return on those investments.

31 £ sunk costs are included, they should be included in both the base case (without distributed solar) and the case with
distributed solar, which leads them to cancel each other out.
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significant or de minimus. In other words, it provides no information regarding whether the rate impacts
are likely to be reasonable, given the other benefits of distributed solar resources. A separate rate
impact analysis, described in Section 5 below, can provide more useful metrics for this purpose, such as
the percent change in rates or the average change in customer monthly bills.

The Participant Cost Test

The Participant Cost Test indicates whether a distributed solar resource is cost-effective from the
perspective of the participant (the host solar customer). This test includes all of the impacts on the solar
customer, but no other impacts. This test is fundamentally different from the other four tests described
here in that the benefits are based on avoided electricity rates, not avoided utility system costs.

The Participant Cost Test should include all customer equipment, installation, and maintenance costs for
the distributed solar facility, or solar lease payments (if applicable). The benefits should include all the
benefits experienced by the solar customer, including reductions in electricity bills, as well as non-bill
benefits such as reduced environmental impacts. In practice, these non-bill benefits to solar customers
are rarely, if ever, estimated and included in cost-effectiveness analyses

of distributed solar resources.

The extent to which
The main advantage of the Participant Cost Test is that it provides an customers are likely to
indication of the extent to which host customers would benefit from adopt distributed solar
resources will affect the
need for future electricity

resources, including
the impacts of distributed solar resources relative to other electricity generation, transmission,

installing distributed solar facilities. The main limitation of the
Participant Cost Test is that it does not provide information regarding

resources, and provides no information regarding the impacts on the and distribution facilities.
electricity system as a whole.

Nonetheless, the impacts on solar customer are connected to electricity

resource planning in one important way. The extent to which customers are likely to adopt distributed
solar resources will affect the need for future electricity resources, including generation, transmission,
and distribution facilities. Therefore, customer adoption rates will affect the future resource scenarios
that should be used in cost-effectiveness analyses. However, conventional application of the Participant
Cost Test may not provide sufficient information regarding customer adoption, as there is little
information directly linking the results of the Participant Cost Test to penetration rates. For this reason,
calculating the customer payback period instead of, or in addition to, the Participant Cost Test provides
a more useful and direct means of determining the extent to which customers are likely to install
distributed solar resources.

4.3. Implications of the Tests for Distributed Resources

Jurisdictions should consider several perspectives, when assessing the cost-effectiveness of distributed
solar resources. As noted above, each cost-effectiveness test provides different types of information.
The key implications for each test for distributed solar are as follows:

e  Utility Cost Test: This tests provides the simplest, most direct indication of the future
costs and benefits of distributed solar resources on all customers as a whole. It is a
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fundamental metric used in utility resource decision-making, including integrated
resource planning. Therefore, it should be one of the primary tests used to indicate cost-
effectiveness of distributed solar resources.

e Total Resource Cost Test: This test attempts to indicate the future costs and benefits of
distributed solar resources on the utility system and solar customers. However, it does
not accurately capture the benefits to solar customers. Further, while it includes “total”
resource costs, it does not include total resource benefits, particularly those related to
energy policy goals. Therefore, this test should be used with caution, and with an
understanding of its limitations, when assessing the cost-effectiveness of distributed
solar resources.

e Societal Cost Test: This test provides the most comprehensive indication of future costs
and benefits of distributed solar resources, including the impacts related to energy
policy goals, such as promoting local jobs and economic development and reducing
environmental impacts. Therefore, it should be one of the primary tests, along with the
Utility Cost Test, used to indicate cost-effectiveness of distributed solar resources.

e Rate Impact Measure Test: This test is different from the other tests in that it attempts
to measure cost-shifting and impacts on non-solar customers. However, this test
conflates cost-effectiveness with cost-shifting, and therefore does not provide useful
information regarding either. Therefore, it should not be used to indicate the cost-
effectiveness of distributed solar resources. Instead, cost-shifting from distributed solar
resources should be analyzed using separate rate impact analyses, as described in
Section 5.

e Participant Cost Test: This test provides a relatively narrow indication of the future costs
and benefits of distributed solar resources on solar customers only. It does not provide
information regarding the cost-effectiveness of distributed solar resources relative to
other electricity resources. In other words, it does not provide much useful information
for the purpose of comparing future resource options. The solar participant’s
perspective, however, is useful for estimating the extent to which different policies will
encourage the development of distributed solar resources. Analyses of customer
payback periods and adoption rates, as described in Section 3, are more useful for this
purpose than the Participant Cost Test.

In sum, jurisdictions should generally use Utility Cost Test and the Societal Cost Test to understand the
impacts of distributed solar, while the TRC Test should be used only with caution. Cost-shifting should be
addressed using a rate impact analysis, not the RIM Test. And the solar participant’s perspective should
be addressed using a customer payback period and adoption rate analysis.

It is also important to recognize that each jurisdiction can choose how much emphasis to place on any
one of the tests. Those with a greater focus on reducing utility system costs should give more weight to
the Utility Cost Test; while those with a greater focus on achieving other energy policy goals should give
more weight to the Societal Cost Test.
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4.4, Cost-Effectiveness Tests Example

The results of distributed solar cost-effectiveness analyses tend to vary considerably by jurisdiction,
particularly because the retail rates and the avoided costs vary significantly, and because these studies
often use different methodologies and assumptions when accounting for costs and benefits.

To show how the choice of cost-effectiveness test can impact the results of a study, we have chosen an
example analysis and present the cost-effectiveness results from the utility system perspective, the total
resource cost perspective, and the societal perspective. The purpose of this example is not to endorse

any of the studies or draw any conclusions about cost-effectiveness in any one jurisdiction, but is simply
intended to illustrate the points made above.

Figure 8 presents an example of the cost-effectiveness results for a city in Pennsylvania, based upon the
Utility Cost Test.32 It shows the long-term average costs to the utility system, relative to the long-term
average benefits to the utility system. Results of the Utility Cost Test generally show that distributed
solar resources are very cost effective. This is because a large portion of the resource cost—the

equipment, installation, and maintenance costs—are borne by the host customer, not the utility or the
other customers.

Figure 8. Cost-Effectiveness Results for the Utility Cost Test
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Figure 9 below presents the cost-effectiveness results for the same location, based upon the TRC Test. In

this case the costs of the (privately financed) distributed solar facility are added to the utility costs, and
the costs slightly outweigh the benefits.

32 The utility and societal avoided cost results for Figure 8 through Figure 10 are derived from Perez, Norris, and Hoff (2012) for
Pittsburgh.
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Figure 9. Cost-Effectiveness Results for the TRC Test
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Figure 10 presents the cost-effectiveness results for the same location, based upon the Societal Cost
Test. In this case the societal benefits are added to the utility system benefits.

Figure 10. Cost-Effectiveness Results from Recent Studies — Societal Cost Test33
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As indicated in the figures above, the choice of test used to assess cost-effectiveness will have a
significant impact on the outcome of the analysis—even within a single study using consistent

methodologies and assumptions. This is why it is so important to understand the information that each
test does, and does not, provide.

33 Note that “societal” benefits may be defined differently from jurisdiction to jurisdiction. For example, economic
development benefits (i.e., jobs) are not always included.
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5. COST-SHIFTING FROM DISTRIBUTED SOLAR

The potential for cost-shifting from solar to non-solar customers is one of the most important issues
facing utilities and regulators in essentially every jurisdiction addressing this topic. Therefore, cost-
shifting warrants considerable attention and should be analyzed as concretely and comprehensively as
possible. Although the RIM Test attempts to address cost-shifting, it does not provide sufficient
information necessary to fully understand and address this important issue, as described in Section 4.2.

Cost-shifting from distributed solar customers to non-solar customers occurs in the form of rate impacts,
which results in higher bills for non-solar customers. Rates increase or decrease to reflect changes in
electricity sales levels, changes in costs, or both. A comprehensive, long-term rate impact analysis will
account for both of these effects, thereby providing the necessary information to help understand this
critical issue.

When evaluating cost-shifting, it is important to also analyze both long-term and short-term rate
impacts to understand the full picture. Generally, the benefits of distributed solar may not be realized
for several years while a decrease in electricity sales occurs immediately. This can result in short-term
rate increases, followed by long-term rate decreases. Thus a short-term rate impact analysis will not
fully capture the impacts of distributed solar, and should not be performed without also evaluating long-
term rate impacts.

In their most simplified form, electricity rates are set by dividing the utility’s revenue requirement (in
millions of dollars) over its sales (typically measured in kilowatt-hours).

Revenue Requirement

Rates =
Sales

Thus rate impacts are primarily caused by two factors:

1. Changes in costs: Holding all else constant, if a utility’s revenue requirement decreases,
rates will decrease. Conversely, if a utility’s revenue requirement increases, rates will
increase. Distributed solar can avoid many utility costs, which can reduce utility revenue
requirements. Distributed solar can also impose costs on the utility system (such as
interconnection and distribution system upgrade costs.)

2. Changes in electricity sales: If a utility has to recover its revenues over fewer sales, rates
will increase. This is commonly referred to as recovering “lost revenues” and is an
artifact of the decrease in sales, not any change in actual costs incurred by the utility.
Rather, the rate increase is due solely to the distribution of costs among solar and non-
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solar utility customers. This impact is therefore only relevant to a rate impact analysis,
which captures distributional impacts, not a cost-benefit analysis.34

Whether distributed solar increases or decreases rates will depend on the magnitude and direction of
each of these factors. If in one year distributed solar decreases the utility’s revenue requirement by a
larger percentage than sales decrease, rates can decline.3 In reality, cost reductions may not reduce a
utility’s revenue requirement substantially in the near-term for two reasons.

First, in the short-term, the utility will still have to recover its sunk

The benefits of distributed
solar may not be realized
for several years while a
solar, but will continue to be recovered through the utility’s revenue decrease in sales occurs

costs—the investments that the utility made in the past and amortized

over many years.3® These sunk costs will not be reduced by distributed

requirement until they have been fully depreciated. Thus a decrease of immediately. For this
reason, both a long-run

5 percent in next year’s costs will not necessarily result in a decrease of .
and a short-run analysis of

5 percent in total revenue requirements, since a large portion of a rate impacts offer valuable
utility’s revenue requirement stems from the recovery of historical information.
investments.

Second, distributed solar can help to avoid certain utility investments, and these avoided costs should
be accounted for in a cost-benefit analysis. In the long run, if the average net avoided costs to the utility
system (in dollars per kilowatt-hour) are equal to the credit received by the solar customer, then no
cost-shifting over the study period is expected to occur.?’ If the net avoided costs are less than the
credit received by the solar customer, rates will increase and cost-shifting will occur. Similarly, if net
avoided costs are greater than the credit received, then a reduction in rates may occur.

These potential impacts are illustrated in the figure below. The column on the left shows the magnitude
of the net utility system costs avoided by each kilowatt-hour of solar generation. For a net metered
customer, the credit is equal to the retail rate. If the net avoided costs are lower than the retail rate (the
middle bar), then each kilowatt-hour of solar generation will result in lost revenues to the utility that

34 Cost-benefit analyses generally ignore distributional impacts, adhering instead to the Kaldor-Hicks efficiency criterion. This
criterion focuses on maximizing total net benefits so that, in theory, any losers could be compensated and made no worse
off than they were before. Although cost-benefit analyses can be made to incorporate “distributional weights” to account
for equity concerns, this is difficult to do and rarely done in practice. A rate and bill impact analysis offers a means of
assessing distributional impacts in a manner that is more transparent, comprehensive, and theoretically sound than the
traditional application of the RIM Test.

35 Whether or not rates actually decrease is dependent upon whether the utility’s revenues are recalculated and new rates are
set. However, there may be a lag of several years before a new rate case commences and new rates are set.

36 The utility is also allowed the opportunity to recover a return on its investments.

37 The net avoided costs account for both the benefits and any additional costs imposed on the utility system by distributed
solar.
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increase rates, as shown by the right bar. Conversely, higher net avoided costs will reduce rates, as
shown in the graph on the right.

Figure 11. Rate Impacts Associated with Different Levels of Net Avoided Costs
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While the utility system avoided costs vary from jurisdiction to jurisdiction, many recent studies have
estimated levelized avoided costs in excess of the retail rate, on a long-term levelized basis.3® For each
state where the avoided costs exceed the retail rate, distributed solar will likely lead to a reduction in
rates over the long-term, and vice versa.3°

As noted above, however, the timing of any benefits to the utility system

is important to include in a rate impact analysis. Distributed solar will not Rate impacts should be
presented in meaningful
terms, such as the
percent change in rates,
capacity upgrades may eventually be needed, and distributed solar can as well as the annual
help to defer or avoid these investments, particularly when such and monthly bill impacts
per customer (i.e., in

dollars per customer per
benefits will only help to reduce revenue requirements in the years that month or year).

help to defer or avoid capacity upgrades when no upgrades are planned
for the near term. In time, generation, transmission, or distribution

investments are driven by additional load growth.*® However, such

they would have otherwise occurred.

38 See, for example, Norris et al. 2015; Stanton et al. 2014; Perez, Norris, and Hoff 2012; Beach and McGuire 2013b; Hallock and
Sargent 2015.

39 Because utility system investments are often lumpy, many jurisdictions will experience short-term rate increases, even
though rates may decline over the long run.

40 75 the extent that solar generation reduces peak loads on the distribution system, new infrastructure (such as substation
upgrades) may be deferred or even entirely avoided. Solar generation may also help to provide thermal performance
benefits through reducing peak demand, minimizing system losses, and improving reactive demand compensation.
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In sum, because the benefits of distributed solar may not be realized for several years while a decrease
in sales occurs immediately, jurisdictions often experience short-term rate increases. For this reason,
both a long-run and a short-run analysis of rate impacts offer valuable information, and a thorough
analysis of rate impacts resulting from distributed solar should include both the long-term change in
customer rates as well as the year-to-year impacts.

The manner in which the results of a rate impact analysis are presented are important. Rate impact
results should be presented in meaningful terms, such as the percent change in rates, as well as the
annual and monthly bill impacts per customer (i.e., in dollars per customer per month or year).

A rate impact analysis provides a critical piece of information for decision-makers when determining
distributed solar policies. The analysis should be performed for the current set of distributed solar
policies, as well as any new policy considered to determine the degree to which both short-term and
long-term rates are affected. Ultimately, the objective is to strike a balance between encouraging cost-
effective resource investments and preventing unreasonable rate impacts to non-solar customers.
Decision-makers may choose to tolerate moderate short-term increases in rates in order to achieve
long-term system cost reductions, or they may decide that rate impacts on non-solar customers need to
be mitigated by implementing other policies specifically aimed at addressing these impacts. Policies
designed to mitigate rate impacts may include changes to rate design, or other options discussed in
Section 2.
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6. SUMMARY AND EXAMPLE OF THE ANALYTICAL FRAMEWORK

6.1. Implementation Steps of the Analytical Framework

The results of the three analyses described above can be pulled together into a single framework that
can be used to evaluate different distributed solar resource policies in a transparent, data-driven
regulatory process.*! The framework proposed here can be used to assess the impacts of different rate
designs or solar compensation mechanisms on the development, cost-effectiveness, and cost-shifting
resulting from the distributed solar resources. If one policy option indicates an unreasonable amount of
cost-shifting, then alternative policies may be warranted to mitigate cost-shifting.*? If, on the other
hand, the policy option results in very little solar development, and will not allow the jurisdiction to
meet its energy policy goals, then alternative policies may be warranted to increase solar development.

The framework proposed here includes several steps that decision-makers or other stakeholders can
take to assess the implications of different distributed solar policies. These steps are summarized in
Table 4.

Table 4. Steps Required to Assess Distributed Solar Policies

Step 1 | Articulate state policy goals regarding distributed solar resources.

Step 2 | Articulate all the existing regulatory policies related to distributed solar resources.

Step 3 | Identify all of the new distributed solar policies that warrant evaluation.

Step 4 | Estimate the customer adoption rates under current solar policies, and new solar policies.

Step 5 | Estimate the cost-effectiveness of distributed solar under current policies and new policies.

Step 6 | Estimate the extent of cost-shifting under current solar policies, and new solar policies.

Step 7 | Use the information provided in the previous steps to assess the various policy options.

6.2. Example Application of the Framework
An example will help to illustrate how a jurisdiction might apply the framework:

Step 1—Policy Goals: Consider a jurisdiction that has articulated a desire to promote cost-effective
renewable distributed energy resources, to the extent that rate impacts are not unreasonable. Although
current penetration levels of distributed solar are only at 1 percent, there is concern that rate impacts

4L see for example “Good Process” letter to Travis Kavulla, signed by 32 consumer, low-income, environmental and technology-

specific advocates, June 23, 2016, available at http://blogs.edf.org/energyexchange/files/2016/06/Good-Rate-Design-
Process-Letter-to-NARUC.pdf

42 5uch policies could include solar programs targeted to low-income individuals, reductions in solar generation credits,
reductions in solar carve-out targets, or rate design options such as time-of-use rates or minimum bills. It is also important to
understand how rate impacts may change over time. For example, short-term rate increases may be followed by long-term
rate decreases. In such cases the mitigating policies should be chosen carefully to avoid losing the long-term rate reduction
benefits.
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will grow large in the near future under current net metering practices.

Step 2—Articulate Existing Regulatory Policies: The hypothetical jurisdiction currently has full net
metering, i.e., residential solar customers are compensated at the hypothetical utility’s variable rate of
$0.14 per kilowatt-hour, but solar customers are also subject to a non-bypassable fixed charge of $5 per
month. Solar customers do not receive any other incentives other than the current federal investment
tax credit of 30 percent.

Step 3—Identify Policies that Warrant Evaluation: The jurisdiction wishes to continue net metering, but
is considering changes to its current flat rate design, which will impact the magnitude of net metering
credits. Alternatives being considered include time-of-use rates and demand charges. A time-of-use rate
sets different energy rates for different periods of the day (e.g., off-peak, peak, and shoulder periods).

A demand charge reduces the energy charge but adds a charge based on the maximum amount of
energy used during the month during any one period (typically measured on an hourly or 15-minute
basis). By changing the energy rate, a demand charge impacts the degree to which solar customers can
reduce their bills through solar generation, and thereby also affects the degree of cost-shifting.

The rate design alternatives analyzed in this example are summarized in the table below, and were
developed to be revenue neutral based on a hypothetical jurisdiction’s customer usage patterns.
(Further details are provided in Appendix B: Modeling Assumptions).

Table 5. Rate Design Policy Options Analyzed

Policy Rate Design
$0.14/kWh

S5 fixed charge

$0.155/kWh Peak (9 am - 8:59 pm)

Flat Rate

TOU $0.110/kWh Off-peak (9 pm — 8:59 am)
S5 fixed charge
$0.11/kWh
Demand Charge $10/kW (based on maximum hour of month)

S5 fixed charge

Step 4—Analyze Customer Adoption: As shown in the Figure 12 below, moving distributed solar
customers from the flat rate to the TOU rate results in a decrease in the payback period from 14 years to
13 years, while a demand charge increases the payback period to 18 years.

Figure 12. Hypothetical Rate Design Impacts on Payback Period
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Using these payback periods and NREL’s market penetration curves, five-year penetration rates can be
estimated. We note that the payback periods assumed here are based on generic market penetration
curves and may not reflect a jurisdiction’s actual experience.*?

Because of its shorter payback period, the TOU rate has the highest estimated five-year penetration
rate, resulting in 9 percent of residential customers adopting distributed solar. Under the flat rate,
penetration reaches 7 percent of residential customers, while under the demand charge, the percent of
residential customers adopting solar reaches only 4 percent after five years. These estimated five-year
penetration rates are shown in Figure 13.

Figure 13. Hypothetical 5-Year Penetration Rates
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Step 5—Evaluate Cost Effectiveness: The avoided costs associated with distributed solar can vary
significantly from jurisdiction to jurisdiction, and may change over time. For illustrative purposes, we
discuss the results of two hypothetical avoided cost scenarios, one with net avoided utility system costs
higher than the current retail rate of $0.14 per kilowatt-hour, and the other with net avoided costs that
are lower than the retail rate, as shown in Figure 14 below.**

43 \We recommend that each jurisdiction conduct its own analysis of likely market penetration, and also consider the effect of
alternative solar financing models (such as third-party leases). Further, we reiterate that the Bass Diffusion Model described

in Section 3 does not account for the affordability of a technology. As the price of solar declines, customer adoption may
surpass prior estimates.

44 These avoided cost assumptions do not include any societal benefits or participant benefits. The environmental benefits that
are included are those that would be incurred by the utility to comply with environmental regulations (such as NOy, SOy, and
the Clean Power Plan). We have also subtracted out a small amount of utility costs (administrative or integration costs) to
arrive at the net avoided costs. The magnitude of these costs and benefits is likely to change at higher penetrations, and thus
must be re-evaluated frequently.
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Cost-effectiveness results are Figure 14. Hypothetical Low and High Avoided Costs

presented in Figure 15 for the

- . Retail Rate of Market
Utility Cost Test and the Societal 50.15 <0.14 Effects
Cost Test. Under both higher and _————— .
lower avoided cost assumptions, $0.13 Comeiones
each rate design analyzed exhibits Avoided T80
positive net benefits. As discussed $0.11
Compliance
above, the Utility Cost Test is Avoided T80 Avoided
expected to result in positive net 109 Gg:;:z;"
. . = . Net
benefits, since the host customer’s 3 Avoided A 9d g
< Generation Avoided Losses S
cost of installing a solar system is =R Capacity scgi?s
. . z 7 :
not included in the test. The S Avoided Losses Net
X X< Avoided
Societal Cost Test may or may not R Costs
. . . : $0.113
result in positive net benefits, rvoided
\elle[]
depending on the magnitude of Avoided Fueland
N . $0.03 Fuel and O&M
any utility system or societal 0&M
benefits (such as avoided
. - 45 $0.01
environmental externalities.)
The greatest net benefits are -$0.01
Low Net Low High Net High

associated with the TOU rate,
largely because the TOU rate results in the highest levels of solar adoption. The lowest net benefits are
associated with the demand charge, which has relatively low customer adoption levels.

Figure 15. Hypothetical Net Benefits for Rate Design Alternatives
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Step 6—Analyze Cost-Shifting: Bill impacts for non-solar customers are shown in Figure 16. All rate
designs result in lower bills for non-solar customers in the scenario with higher avoided costs. These
lower bills are shown as negative numbers in the graph and indicate that solar customers are providing a

43 In this report, for illustrative purposes, the Societal Cost Test includes a relatively low value of $0.01 per kWh in hypothetical
avoided environmental externality benefits.
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net benefit to both the system and to non-solar customers.) In the scenario with lower avoided costs,
bills for non-solar customers are expected to increase for the flat rate and the TOU rate.

The results of lower bills for non-solar customers is expected under the higher avoided cost scenario, as
the average avoided costs slightly exceed the retail rate. When avoided costs exceed the value of the
credits received by solar customers, the reductions in utility costs offsets any rate increase that would
occur due to lost revenues.

Under the lower avoided cost scenario, bill increases are expected because the average avoided costs
are less than the bill credits received by solar customers under the flat rate and the TOU rate. The flat
rate credit of $0.14 per kilowatt-hour exceeds the average avoided cost of $0.113 per kilowatt-hour,
while the time-of-use rates and the peak time period definition (9 am — 9 pm) result in solar generation
being compensated primarily at $0.155 per kilowatt-hour. Bill increases under the TOU rate are
compounded by the fact that the TOU rate incentivizes greater solar adoption than under the flat rate,
leading to higher overall penetration levels.

In the case of the demand charge, the compensation rate for solar customers is relatively low, only just
slightly exceeding the lower avoided cost level. Further, solar generation generally does not reduce a
solar customer’s billed demand significantly, resulting in solar customers paying a similar demand
charge as non-solar customers. Because the demand charge reduces solar customers’ bill savings,
penetration remains relatively low. For these reasons, cost-shifting from solar customers to non-solar
customers does not occur under the demand charge (and in fact costs are being shifted in the other
direction, from non-solar customers to solar customers).

Figure 16. Hypothetical Cost-Shifting from Alternative Rate Designs
$3.00 $2.84

$2.00 $1.67
$1.00

$0.00

-$0.10
-$1.00 -$0.53
-$0.98

-$2.00 -$1.68

Avg Monthly Bill Impact

-$3.00
Higher Avoided Costs Lower Avoided Costs

Flat Energy Rate TOU Rate Demand Charge

Step 7—Assess Policy Options: The results of these alternative rate design policies are summarized in
the tables below, which provide the opportunity to compare the net benefits to any cost-shifting
impacts.

For example, assuming the higher avoided costs, the TOU rate results in the lowest bill reductions for
non-solar customers. However, the TOU rate results in the highest net benefits, totaling more than $4
billion under the Utility Cost Test, and $2.5 billion under the Societal Cost Test. In contrast, the demand
charge results in the greatest bill reductions, but the lowest net benefits and the lowest levels of solar
penetration. The reason that the demand charge results in the greatest bill reductions is that costs are
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being shifted from non-solar customers to solar customers. In other words, solar customers are reducing
system costs more than the value of their bill credits, under both the high and low avoided cost
scenarios. Due to the relatively low penetration of 4 percent, however, the net benefits to the utility
system are not as high as they would be under the flat rate or the TOU rate.

Table 6. Summary of Hypothetical Alternative Rate Design Policies—High Avoided Costs

I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development . . Impacts
Customer 5-Year Utility Net TRC Net SSHEE Avg. Bill Long-
! . . ! N Net " Term Avg.
Payback | Penetration Benefits | Benefits | Impact | .
| : i Benefits + Bill Impact
o 20/15% + 20158  2015% 2015 o
Years % Milion | Milion |  Million $mo | ”
Flat Rate 14 5 7% $3,300 : $1,800 : $2,000 -$0.98 ' -0.7%
TOU (9 am - 9 pm) 13 L 9% $4,100 | $2200 | $2,500 $0.53 | -0.4%
Demand 18 4% $2000 | $1,000 i $1,200 | -$l1.68 | -12%

Under the assumption of low avoided costs, the trade-off among policies becomes more pronounced. In
this case, both the flat rate and the TOU rate result in bill increases for non-solar customers. (See Table
7, below.) However, these two rates also provide the greatest net benefits to the utility system and
society. Decision-makers and stakeholders must then determine the appropriate trade-offs between bill
decreases and overall net benefits. (Note that there are many ways that a TOU rate can be designed, as
explored more in the following chapter.)

Table 7. Summary of Hypothetical Alternative Rate Design Policies—Low Avoided Costs

I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development . . Impacts
Customer |  5-Year Utility Net | TRC Net | ST Avg. Bill Long-
! . ; ! ! Net ' Term Avg.
Payback | Penetration Benefits | Benefits | Impact | .
| | 1 Benefits + Bill Impact
Years o 2015¢  2015% : 20I5¢% 2015 %
: i Million i Million :  Million $imo i}
Flat Rate 14 7% $2,400  $900 : $1,100 $1.67 1.1%
TOU (9 am -9 pm) 13 9% $3,000  $1,100 $1,400 $284 I 2.0%
Demand 18 I 4% $1,500 | $500 |  $600 -$0.10 | -0.1%

These results can be used by decision-makers and other stakeholders to compare distributed solar
policies, and ideally to choose those that balance the potential rate impacts with cost-effectiveness and
the state’s energy policy goals. Further, the results can be used to establish appropriate penetration
thresholds for future review of solar policies.

Decision-makers and stakeholders may differ in their choice of preferred policy options, but the
framework described in this report will serve to make deliberations transparent and well informed.
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7. FURTHER EXAMPLES

To illustrate how various policies may affect solar penetration, cost-effectiveness, and cost-shifting, we
have modeled several additional scenarios, using the hypothetical low and high avoided cost estimates
introduced above. Each jurisdiction has its own unique characteristics in terms of avoided costs,
customer usage patterns, solar output, rate structures, and incentives for solar PV. For this reason, the
results below cannot be assumed to apply broadly to all jurisdictions, although the general direction of
the results may hold in many parts of the country.

7.1. TOU Rate Sensitivity

Time-of-use rates can be designed in many ways. They can consist of long peak periods (such as the 9
am-9 pm example above), or the peak period can be narrow. The differential between the peak and off-
peak rate also plays a critical role in determining the magnitude of bill credits received by solar
customers. TOU rates can provide more efficient price signals than flat rates if they are designed so that
the prices associated with each period reflects the relative cost of providing electricity during those
hours. Prices are typically highest during periods of high demand, when the most expensive generators
must be used to provide power.

Step 3—Identify Policies that Warrant Evaluation: To continue our example from above, suppose that
the hypothetical jurisdiction wishes to examine the range of impacts that the design of TOU rates can
have on solar penetration, cost-effectiveness, and cost-shifting. To do so, the jurisdiction conducted a
sensitivity analysis using several variations of a TOU rate, shown in the table below.

Table 8. TOU Rate Alternatives Analyzed

TOU Rate Name Hours Rate Design

Peak: 2:00 pm — 5:59 pm Peak: $0.155
Shoulder: 6:00 am — 1:59 pm, Shoulder: $0.138

TOU Afternoon Peak 6:00 pm — 11:59 pm Off-Peak: $0.130
Off-Peak: 12:00 am —5:59 am
Peak: 5:00 pm — 8:59 pm Peak: $0.220

TOU Evening Peak Shoulder: 2:00 pm —4:59 pm, 9 pm — 11:59 pm  Shoulder: $0.135
Off-Peak: 12:00 am — 1:59 pm Off-Peak: $0.090
Peak: 2:00 pm — 8:59 pm Peak: $0.200

TOU Extended PM Peak Off-Peak: 9:00 pm — 1:59 pm Off-Peak: $0.090

These TOU options are illustrated in the figure below:
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Figure 17. TOU Rates Modeled
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Step 4—Analyze Customer Adoption: The payback periods shown below demonstrate how changes to
TOU rate peak/shoulder/off-peak periods and their associated prices can significantly impact distributed
solar economics. For comparison purposes, the TOU rate from Section 6 (with a peak period from 9 am —
9 pm) is also included.

The TOU rate from the previous example (9 am — 9 pm) has a payback period of 13 years, while the
three new TOU rates analyzed have payback periods that range from 14 to 19 years. The TOU Extended
Evening Peak (with a peak from 5 pm — 9 pm) has the longest payback period, as it results in net
metered solar customers being credited for their generation primarily at the off-peak rate or shoulder
rates, since the peak period does not begin until solar generation is waning.
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Figure 18. Hypothetical Payback Periods for TOU Rate Alternatives
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The five-year penetration levels associated with the TOU Afternoon Peak design is 9 percent, while the
penetration level for a TOU Extended PM Peak design is 6 percent, while the TOU Evening Peak results in
a five-year penetration level of only 4 percent. These penetrations are shown in Figure 19.

Figure 19. Hypothetical 5-Year Penetration Rates
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Step 5—Evaluate Cost-Effectiveness: As in the previous chapter, the cost-effectiveness results are
presented under both higher and lower avoided cost estimates. Again, all rate options exhibit positive
net benefits, with the greatest net benefits associated with the rate with the highest penetration of
solar (the TOU Afternoon Peak design). These results are shown in Figure 20 below.

Figure 20. Hypothetical Net Benefits of TOU Rate Alternatives
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Step 6—Analyze Cost Shifting: Bill impacts for non-solar customers vary significantly by TOU rate design,
as shown in Figure 21. Under the higher avoided cost scenario, all TOU rates result in bill reductions for
non-solar customers, with the greatest bill reductions stemming from the Extended PM Peak design.
Under the lower avoided cost scenario, the TOU rate with an evening peak period still results in bill
reductions for non-solar customers, since the average bill credit for solar generation is less than the
average avoided cost.

In contrast, the bill increase associated with the TOU Afternoon Peak rate is more than $2 per month,
due to the fact that this rate aligns well with solar generation and results in the highest penetration
levels. Thus a large portion of solar generation is compensated at a peak period rate that exceeds the
levelized avoided cost value under the lower avoided cost scenario.

The Extended PM Peak rate (with a peak from 2 pm to 9 pm) results in much lower bill increases ($0.40
per month), while still achieving moderate five-year penetration levels of 6 percent.

Figure 21. Hypothetical Bill Impacts of TOU Rate Alternatives
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Step 7—Assess Policy Options: The overall hypothetical impacts of the TOU rates analyzed are
summarized in the tables below.

Table 9. Summary of Hypothetical TOU Rate Impacts — High Avoided Cost

|. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development Impacts
Customer |  5-Year Utility Net | TRC Net ! Societal Avg. Bill ! Long-
! . . ! ! Net  Term Avg.
Payback ! Penetration Benefits | Benefits ! Impact | _.
i : i Benefits i Bill Impact
| o 2015  2015% . 2015% 2015 o
Years X Millon | Milion |  Million $imo | *
TOU Peak 2pm-6pm 13 9% $4,100 : $2,200 : $2,500 -$1.07  -07%
TOU Peak 5pm-9pm 14 5 7% $1,700 | $800 |  $900 $155 0 -11%
TOU Peak 2pm-9pm l6 6% $2,700 | $1,400 | $1,600 $174 | -12%
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Table 10. Summary of Hypothetical TOU Rate Impacts — Low Avoided Cost

I. Distributed Solar

2. Cost Effectiveness

3. Rate and Bill

Development Impacts
Customer |  5-Year | Utility Net | TRC Net | 05l | Ay gy | Lone
' . ; ' | Net i Term Avg.
Payback | Penetration Benefits | Benefits | Impact ! _.
: : i Benefits i Bill Impact
. . 2015% . 2015% . 20/5% 2015 .
Years 7% Million | Milon |  Million $imo | ®
TOU Peak 2pm-6pm 13 b9% $3,000 | $1,100 : $1,400 $230 | 1.6%
TOU Peak 5pm-9pm 14 7% $1200 | $400 |  $500 -$027 | -02%
TOU Peak 2pm-9pm 6 1 6% $2,000 : $700 |  $900 $040 | 03%

7.2. Fixed Charges and Minimum Bills

In recent years, many utilities have proposed to increase fixed charges for residential customers, in

some cases substantially (Whited, Woolf, and Daniel 2016). By increasing the fixed portion of the bill,

fixed charges reduce the energy rate, thereby also reducing bill credits for net metered customers. As an

alternative to increasing the fixed charge, some jurisdictions have adopted a minimum bill. Minimum

bills only take effect if a customer’s bill would fall below the minimum amount; otherwise the minimum

bill does not apply. Unlike a fixed charge, a minimum bill does not reduce the energy rate, thereby

enabling net metered customers to receive the same credit per kilowatt-hour after they have paid the

minimum bill.

Step 3—Identify Policies that Warrant Evaluation: This example explores the impacts of increasing the

fixed charge to $25 per month or setting a minimum bill at $25 per month for the hypothetical

jurisdiction. All rates are designed to be revenue neutral.

Table 11. Flat Rate, Higher Fixed Charge, and Minimum Bill Designs Analyzed

Policy Rate Design
Flat energy charge of $0.14

Flat Rate Fixed charge of $5
Higher Fixed Flat energy charge of $0.12

Fixed charge of $25

Flat energy charge of $0.145
Minimum Bill Minimum bill of $25
No fixed charge

Step 4—Analyze Customer Adoption: Both the minimum bill and the higher fixed charge increase the

payback period for net metered customers. Under the minimum bill, the payback period increases from

14 years to 15 years, while the higher fixed charge extends the payback period to 16 years.
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Figure 22. Hypothetical Payback Periods for Flat Rate, Higher Fixed Charge, and Minimum Bill
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Although the minimum bill increases the payback period by a year, it is not enough to significantly alter
the five-year penetration rate. Under the minimum bill, the five-year penetration declines only slightly
from 7.3 percent to 6.8 percent.*® Under the high fixed charge, penetration declines to 5.9 percent.

Figure 23. Hypothetical 5-Year Penetration Rates
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Step 5—Evaluate Cost-Effectiveness: All three rate designs are cost-effective, but the flat rate exhibits
the highest net benefits, followed by the minimum bill, as shown in Figure 24. This is in part due to the
flat rate and minimum bills result in higher penetrations of solar than the high fixed charge.

46 Reported values are rounded.
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Figure 24. Hypothetical Net Benefits of Flat Rate, Higher Fixed Charge, and Minimum Bill
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Step 6—Analyze Cost-Shifting: As expected, by increasing the amount that solar customers must pay,
the higher fixed charge and the minimum bill reduce potential negative impacts on non-solar customers.
In the higher avoided cost scenario, the fixed charge and minimum bill result in nearly identical bill
reductions for non-solar customers, despite the minimum bill enabling greater solar penetration. In the
lower avoided cost scenario, the fixed charge reduces the monthly bill increase from $1.67 under the
flat rate to only $0.33. The minimum bill also significantly reduces any bill increases for non-solar
customers, reducing the average monthly bill increase to $0.72.

Figure 25. Hypothetical Cost-Shifting of Flat Rate, Higher Fixed Charge, and Minimum Bill
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The combined results are presented in tabular format in the tables below.
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Table 12. Hypothetical Summary of Alternative Compensation Results—High Avoided Costs

I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development Impacts
i . : : . i Long-
Customer | 5-Year Utility : TRC i Societa| Avg. Bill i Term
Pyl | Ponwaden | oo p NEE b WNGE Impact | Avg. Bill
aybac | enetratio Benefits : Benefits | Benefits pac | VE:
: 5 5 i Impact
: . 2015¢% @ 2015¢% : 2015¢% | 2015 |
Uity e Million | Million | Million $mo | *
Flat Rate 14 i 7% $3,300  $1,800 | $2,000 -$098 | -0.7%
High Fixed Charge 6 | 6% $2,700 | $1,400 ! $1,600 $181 1 -1.2%
Minimum Bill 15 7% $3,100 | $1,600 | $1,800 $174 1 -12%
Table 13. Hypothetical Summary of Alternative Compensation Results—Low Avoided Costs
I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development Impacts
i . : : . i Long-
Customer |  5-Year Utility : TRC : Societa| Avg. Bill | Term
Payback iPene’cration NG ) _WE o NE Impact ! Avg. Bill
Y ! Benefits : Benefits | Benefits P | &
! ; ) ' Impact
; o 2015% © 2015% : 2015% 2015 o
Years % Milion ' Milion | Milion | $imo | *
Flat Rate 14 7% $2400 | $900 | $1,100 $167 | LI%
High Fixed Charge 6 | 6% $2000 | $700 | $900 $033 | 02%
Minimum Bill 15 7% $2300 | $800 | $1,000 | $072 | 0.5%

7.3. Alternative Compensation Mechanisms

Some jurisdictions are considering moving from traditional net metering (which provides one-to-one
monthly bill credits to solar customers to offset their consumption) to alternative forms of netting. One
form consists of netting net generation against consumption on a near-instantaneous basis, rather than
at the end of the month. Solar generation that is not immediately consumed on-site is exported to the
grid at a reduced rate. A similar concept is known as net billing, which still uses a monthly timeframe for
netting, but compensates monthly excess generation at a reduced rate.

Instantaneous netting and net billing are therefore nearly identical, except that they conduct the netting
over different time frames. Under net billing, if a customer generated 800 kWh and consumed 800 kWh
over the course of the month, all generation would be credited at the retail rate. Under instantaneous
netting, a customer would receive the full retail rate for much less of their generation if their load and
generation profiles did not fully align. An example of this situation is shown in Figure 26, below, where
the customer receives full compensation for only 70 percent of his or her generation on a particular day.
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Figure 26. Example Compensation Under Instantaneous Netting
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Step 3—Identify Policies that Warrant Evaluation: Suppose the hypothetical jurisdiction wishes to
examine the impact of other compensation mechanisms, such as instantaneous net metering with
reduced payment for any generation exported to the grid (e.g., $0.08 per kilowatt-hour of generation
not consumed immediately at the customer’s site), and net billing with reduced payment for monthly
excess generation (e.g., $0.03 per kilowatt-hour for any generation that does not offset consumption
when netting occurs at the end of the month.) These policies are summarized in the table below.

Table 14. Alternative Compensation Mechanisms Analyzed

Policy Credit for Behind-the- Credit for Generation Credit for Monthly
Meter Generation Exported to Grid Excess Generation
Full Net Metering Full retail rate ($0.14) Full retail rate ($0.14) Full retail rate ($0.14)
$0.08 for any generation
Instantaneous Netting  Full retail rate ($0.14) not consumed $0.08

immediately on-site
Full retail rate (50.14)

Net Billing Full retail rate ($0.14) until generation exceeds  $0.03
consumption

Step 4—Analyze Customer Adoption: A comparison of the payback periods associated with each of
these options might reveal that the current full net metering arrangement has an estimated payback
period of 14 years, a net billing arrangement with $0.03/kWh for excess compensation might only
lengthen that payback period to 15 years, and instantaneous netting with $0.08/kWh for generation
pushed onto the grid would extend the payback period to 18 years. This demonstrates the degree to
which instantaneous netting can erode a solar customer’s bill savings, even when the credit for exports
is much higher than the monthly excess rate under net billing.
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Figure 27. Hypothetical Payback Periods for Alternative Compensation Mechanisms
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Based on market penetration curves, these payback periods would be expected to yield a five-year
penetration rate of 7 percent under full net metering and under net billing, but only 4 percent under
instantaneous netting.

Figure 28. Hypothetical 5-Year Penetration Rates
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Step 5—Evaluate Cost-Effectiveness: Under both higher and lower avoided costs, each compensation
policy is shown to be cost-effective, as demonstrated by positive net benefits (see Figure 29). However,
the net benefits are highest for full net metering and lowest for instantaneous netting.

Figure 29. Hypothetical Cost-Effectiveness of Alternative Compensation Mechanisms
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Step 6—Analyze Cost-Shifting: The extent to which distributed solar increases or decreases bills for non-
solar customers is highly dependent upon three factors: the bill credits that the solar customer receives,
the avoided costs to the utility system, and the percentage of customers that install distributed solar.
We have again used both high and low estimates of avoided costs to illustrate the potential for cost-
shifting at a hypothetical utility. As shown in the graph below, full net metering provides the greatest
compensation to solar customers, thereby resulting in the highest penetration levels. Under the higher
avoided costs scenario, this is not problematic, as the avoided costs outweigh the net metering credit
(the retail rate), resulting in bill decreases of approximately $S1 per month on average for non-solar
customers. However, under the lower avoided cost scenario, bill increases of $1.67 per month can be
expected for non-solar customers under full net metering.

Under the instantaneous netting scenario, solar penetration remains relatively low, at only 4 percent of
residential customers. However, the avoided costs greatly exceed the bill credits in the higher avoided
cost scenario, leading to bill reductions under both scenarios.

Figure 30. Hypothetical Penetration Levels and Bill Impacts of Alternative Compensation Mechanisms
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Step 7—Assess Policy Options: Table 15 tables below provide a summary of the results of the
alternative compensation mechanisms analyzed.

Table 15. Hypothetical Summary of Alternative Compensation Results—High Avoided Costs

Excess

I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development Impacts
: - t i . Long-
Customer |  5-Year Utilicy : UHE : Socictal Avg. Bill ' Term
Payback ! Penetration NG | WE o Nes Impact | Avg. Bill
Y i 1 Benefits : Benefits : Benefits P ; fVe. Bl
i : ] Impact
Year E % 2015% : 2015¢% @ 2015$ 2015 %
ears ° Million ' Million ' Million $imo °
Full Net Metering 14 7% $3,300 | $1,800 | $2,000 -$0.98 | -0.7%
Instantaneous o o
Netting, 8 cent Excess 18 4% $2,000 $1,000 $1,200 -$1.78 -1.2%
Net Billing, 3 cent s 1 7% $3,100 | $1,600 | $1,800 | -$140 | -1.0%
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Table 16. Hypothetical Summary of Alternative Compensation Results—Low Avoided Costs

I. Distributed Solar 2. Cost Effectiveness 3. Rate and Bill
Development Impacts
i . f j . i Long-
Customer | 5-Year Utility : TRC i Societa| Avg. Bill i Term
Payback | Penetration | o ot . MNet o Net G ace | Avg Bil
aybac | enetratio Benefits : Benefits : Benefits pac | Ve
: 5 : i Impact
: . 2015¢% @ 2015¢% : 2015¢% | 2015 |
Years & % Milion | Milion | Milion | $imo | *
Full Net Metering 14 7% $2,400 ! $900 | $1,100 $1.67 | 1L1%
Instantaneous o o
Netting, 8 cent Excess 18 4% $1,500 $500 $600 -$0.20 -0.1%
Net Billing, 3 cent 15 L 7% $2300 | $800 | $1,000 | $107 | 07%
Excess ! ! : |

7.4. Conclusions Regarding Modeling Results

The illustrations above will not necessarily reflect the reality of any particular policy in any particular
place. These examples are provided simply to illustrate the types of analyses that should be used to
inform policy discussions. Nonetheless, based on our review of studies performed to date, as well as the
illustrations in this report, the numbers suggest several general conclusions.

e  First, payback period results are highly sensitive to the retail rate in place, as well as
system cost and size assumptions. Increased fixed charges and demand charges can
dramatically increase payback periods.

e Second, cost-effectiveness results are very sensitive to avoided cost estimates. Under
the Utility Cost Test, distributed solar appears highly cost effective, while under the
Total Resource Cost Test distributed solar is much less cost effective. However, the TRC
Test does not fully account for participant benefits (bill reductions). Under the Societal
Cost Test, distributed solar is often, but not always, cost effective. The Societal Cost Test
helps indicate the extent to which distributed solar will meet certain state policy goals.

e Third, cost-shifting results are very sensitive to avoided cost estimates. In general, the
extent of cost-shifting will depend upon the relationship between the net avoided
costs*’ to the utility system and the credit that the solar customer receives. At low
penetrations, cost-shifting is likely to be minimal.

47 Net avoided costs consist of both the benefits (avoided costs) to the utility system, as well as any increase in system costs
caused by distributed solar.
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8. ScoPE OF THIS REPORT AND FURTHER RESEARCH

8.1. Scope and Limitations of this Report

Developing balanced distributed solar policies requires consideration of many complex economic,
technical, and policy issues. The economic framework proposed in this report will help provide
important information for sorting through many of these complex issues, but it is not intended to
provide an answer to every question.

Each jurisdiction will need to consider several issues, in addition to those addressed here, to ensure that
its distributed solar policies will meet its goals and be in the public interest. For example, decision-
makers and utilities should be mindful of the technical limitations of installing increasing amounts of
distributed solar on the distribution grid, and the costs of doing so. As another example, decision-
makers and utilities should be mindful that average avoided cost values obscure the locational variation
of costs and benefits. These important considerations are beyond the scope of this study.

In addition, the illustrative analyses presented in this report are not
intended to provide an indication of the results that will be experienced Actual results are likely
to be very sensitive to

for any particular state or utility. The actual results are likely to be very specific conditions

sensitive to the specific conditions applicable to the utility territory in applicable to the utility

qguestion. This is particularly true with regard to estimates about avoided territory in question,

costs, but is also true with regard to retail rates and customer load particularly avoided
costs.

profiles. Thus, the illustrative analyses presented in this report should not

be used to draw specific conclusions about any one state or utility. It is

essential that each state or utility apply the framework proposed here based upon local conditions and
assumptions, using the best information that is available.

Further, the illustrative analyses in this report include some simplifying assumptions that could affect
the analytical results. With regard to cost-effectiveness, the analysis does not account for variation in
avoided costs due to the timing or location of distributed solar generation. The customer adoption rates
and models currently available in the literature are based on limited research and may not reflect
accurately project customer adoption rates for every jurisdiction. With regard to cost-shifting and rate
impacts, our analysis does not account for the extent to which costs could be allocated differently across
classes as a result of high penetrations of distributed solar. Ideally, state-specific and utility-specific
analyses will be able to improve upon these simplifying assumptions over time.

Recommendations for Next Steps and Further Research

As demonstrated by the illustrative results above, the analyses recommended in this report are highly
dependent upon good data. For this reason, we strongly recommend that regulators encourage
collaborative and transparent processes for estimating the avoided costs of distributed solar resources.

While there are many value-of-solar studies available today, there also remains considerable debate
over avoided cost calculations and assumptions. Regulators should encourage utilities and other
stakeholders to develop avoided cost estimates in a collaborative and transparent fashion. The six New
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England states use this approach for developing avoided costs of energy efficiency resources, and a
similar approach could be used to develop avoided costs for distributed solar resources.

In particular, we recommend that a collaborative approach be taken to
develop standard avoided cost methodologies and data collection Regulators should
processes. Some of the most difficult avoided cost categories to estimate encourage utilities and

are: other stakeholders to

. L. o o develop avoided cost
e Avoided transmission and distribution costs of distributed solar estimates in a

resources. collaborative and

transparent fashion.
e Locational value of distributed solar resources.

e  Utility costs of integrating and supporting distributed solar
generation on the distribution grid.

In addition, there are several avenues of further research that would be especially useful for states and
utilities seeking to answer key questions in designing balanced distributed solar policies. These include:

e Customer adoption curves for distributed solar resources, and how such adoption curves vary by
location or demographics (including income levels), and how third-party leases or subsidized
loans impact the adoption curves.

e Analyses of the customer adoption, the cost-effectiveness, and the cost-shifting implications of
community solar projects.

e Best practices for incorporating distributed solar resources into distribution system planning
processes in order to reap the greatest net benefits.
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9. OVERALL CONCLUSIONS

In setting distributed solar policies, utility regulators and state policymakers should seek to strike a
balance between ensuring that cost-effective clean energy resources continue to be developed, and
avoiding unreasonable rate and bill impacts for non-solar customers. Yet without a full understanding of
how policy changes may affect both solar and non-solar customers, decision-makers risk implementing
policies that are inappropriate for the jurisdiction’s context.

While there are many analytical assessments of the likely cost-effectiveness of distributed solar
resources, there are few analytical assessments of the extent to which distributed solar might result in
cost-shifting to non-solar customers—even though this question is of great concern to stakeholders in
every jurisdiction. Further, there are few analytical assessments of the extent to which different
distributed solar policies are likely to impact the growth of distributed solar resources. Yet this is a
central question that should be addressed when evaluating distributed solar policies.

To assist decision-makers in evaluating distributed solar policy options comprehensively and concretely,
this report outlines a framework for evaluating distributed solar policies, which is summarized in the
table below:

Table 17. Summary of Framework for Addressing Key Solar Policy Questions

m

Will the policy impact the Development of distributed Payback period analysis

adoption of distributed solar? solar . .
Penetration analysis

Will the policy result in net Cost-effectiveness Utility Cost Test
benefits to the utility system, to

. Societal Cost Test
customers, and to society?

Total Resource Cost Test

To what extent does the policy Cost-shifting Rate impact analysis
mitigate or exacerbate any cost-
shifting to non-solar customers?

Bill impact analysis

Using the results of the analyses presented above, decision-makers can review the projected impacts of
various policy options to determine what course of action is in the public interest. Appropriate
consideration of all relevant impacts will help decision-makers to avoid implementing policies that have
unintended consequences or that fail to achieve policy goals. The analysis results can also help to
determine the point at which certain distributed solar policies should be reevaluated or modified. It is
critical, however, that the analyses be based on accurate inputs, particularly for avoided costs.

Given that each jurisdiction has its own policy goals and unique context, the ultimate policy decision
reached by decision-makers may be different in each jurisdiction, even when based on the same
analytical results. Nonetheless, the framework articulated above will provide decision-makers with the
ability to balance protection of customers with achieving overarching policy objectives in a transparent,
data-driven process.
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APPENDIX A: GENERIC DISCOVERY REQUESTS FOR ASSESSING
DISTRIBUTED SOLAR POLICIES

This section contains sample discovery questions designed to assist stakeholders obtain the key pieces
of information that are required for conducting the analyses recommended in this report.

Note that a “typical residential PV system” may vary across utilities. It is recommended that the term
either be specifically defined for the utility or that the utility be asked to define what it considers to be a
“typical residential PV system” with regard to the questions asked and answered herein.

It is expected that some costs and avoided costs are constant, others only occur in the first year, and still
others will vary throughout the years. Also note that these costs or avoided costs may be a function of
the total quantity of residential PV expected to be on the utility system in each future year.

System Information

All questions refer to customers in the utility system within the state/territory.

General

1. Please provide the number of residential customers.

2. Please provide the forecasted number of residential customers for each year of the
study period.

3. Please provide the complete tariff or tariffs applicable to non-PV residential customers.

PV

4. Please provide the current number of residential PV customers.

5. Please provide the current solar PV nameplate capacity of residential PV on the utility
system.

6. Please provide any studies or forecasts for the number of residential PV customers for
each year of the study period.

7. Please provide any studies or forecasts for the total expected solar PV nameplate
capacity of all the residential PV systems for each year of the study period.

8. Please provide the complete tariff or tariffs applicable to residential customers with
interconnected PV systems.
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Cost Information

General

9. To the extent that the utility has modeled a typical residential PV system for any cost or
benefit calculations, please provide the detailed assumptions for the typical residential
PV system, including

a. Latitude and longitude;

b. DC system size;

c. Array tilt;

d. Array azimuth;

e. System loss percentage; and

f. Inverter efficiency.

10. To the extent that the utility has modeled a typical residential PV system’s hourly output
for any of the cost or benefit calculations below, please provide the modeled hourly
output data for that PV system. If not, please provide any rationale for not using the
NREL PVWatts model.

Utility System Costs

11. Please provide any studies or forecasts of system interconnection costs borne by the
utility. If available, provide such cost estimates in terms of dollars per kW for each year
of the study. If not available, please provide such data in the format that is closest to
that requested.

12. Please provide any studies or cost forecasts regarding costs to integrate additional PV in
the utility’s service territory. If available, provide such cost estimates in terms of dollars
per kW for each year of the study. If applicable, please distinguish between pass-
through costs (e.g. paid to an RTO) and costs internalized by the utility. If not available,
please provide such data in the format that is closest to that requested.

13. Please provide any studies or forecasts of the expected additional annual utility
administration costs (e.g., additional costs associated with billing, customer service,
interconnection applications) associated with [insert applicable distributed PV policies
under consideration, such as net metering, time-of-use pricing, etc.] If available, provide
such cost estimates in terms of dollars per kW for each year of the study. If not
available, please provide such data in the format that is closest to that requested.
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14. Please provide any studies or forecasts that describe and detail any other annual utility
costs associated with customer-sited PV. If available, provide such cost estimates in
terms of dollars per kW for each year of the study. If not available, please provide such
data in the format that is closest to that requested.

Participant Costs

15. Please provide any studies or forecasts of the expected PV purchase and installation
costs borne by the participant for a typical residential PV system. If available, provide
such cost estimates in terms of dollars per kW for each year of the study. If not
available, please provide such data in the format that is closest to that requested.

16. Please provide any studies or forecasts of the expected operations and maintenance
(O&M) costs borne by the participant for a typical residential PV system. If available,
provide such cost estimates in terms of dollars per kW for each year of the study. If not
available, please provide such data in the format that is closest to that requested.

Public Costs

17. Please provide the expected local, regional, state, and federal tax credits associated with
a typical residential PV system for each year of the study.

Benefit Information (“Avoided Costs”)

Utility System Benefits

18. Please provide any studies or forecasts of the expected avoided energy costs per kWh
associated with customer-sited PV, for each year of the study. These avoided energy
costs should be determined using the expected hourly output of a typical residential PV
system and the associated avoided energy costs in that hour. Please include fuel,
variable O&M, SOx and NOx allowances, and any reagents or other materials with a
volumetric cost. Please also identify the number of MWh used in assessing the avoided
energy costs per kWh. In other words, does it represent the marginal avoided energy
cost of a single MWh or an aggregation of many MWh? If the latter, how many?

19. Please provide any studies or forecasts of the expected avoided generation capacity
costs per kW or per kWh associated with customer-sited PV.

20. Please provide the expected generation capacity credit associated with typical
residential customer-sited PV, for each year of the study, and the calculation of each
capacity credit.
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21. Please provide any studies or forecasts of the expected avoided transmission capacity
costs per kW or per kWh associated with customer-sited PV for each year of the study. If
it is expected that there will be incremental additional transmission capacity costs
(rather than avoided costs) for any of the given years, please provide that information as
well.

22. Please provide any studies or forecasts of the expected avoided distribution capacity
costs per kW or kWh associated with customer-sited PV, for each year of the study. If it
is expected that there will be incremental additional distribution capacity costs (rather
than avoided costs) for any of the given years, please provide that information as well.

23. Please provide any studies or forecasts of the expected avoided environmental capacity
costs associated with customer-sited PV. Include any applicable avoided Renewable
Portfolio Standard compliance costs, avoided carbon trading costs (e.g. RGGI or
California’s Cap-and-Trade program), avoided Clean Power Plan compliance costs, and
avoided costs associated with fossil or nuclear generators not explicitly included in the
avoided energy costs. If available, provide such cost estimates in terms of dollars per kW
or kWh for each year of the study. If not available, please provide such data in the
format that is closest to that requested.

24. Please provide any studies or forecasts that describe and detail any other avoided utility
costs associated with the typical residential PV system (such as reduced arrearages), for
each year of the study.

Benefits for Regions with Wholesale Markets

25. Please provide any studies or forecasts of the expected energy-related Demand
Reduction Induced Price Effect (DRIPE) for the utility associated with the typical
residential PV system. If available, provide such cost estimates in terms of dollars per
kW for each year of the study. If not available, please provide such data in the format
that is closest to that requested.

26. Please provide any studies or forecasts of the expected generation capacity-related
Demand Reduction Induced Price Effect (DRIPE) for the utility associated with the typical
residential PV system. If available, provide such cost estimates in terms of dollars per
kW for each year of the study. If not available, please provide such data in the format
that is closest to that requested.
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Public Benefits

27. Please provide any studies or forecasts that describe and detail the expected other
public benefits associated with customer-sited PV. If available, provide such estimates in
terms of dollars per kW or kWh for each year of the study.

28. Please provide any studies or forecasts that describe and detail the expected
environmental externality benefits (e.g. the societal value of carbon not otherwise
internalized) associated with customer-sited PV. If available, provide such estimates in
terms of dollars per kW or kWh for each year of the study.
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APPENDIX B: MODELING ASSUMPTIONS

To undertake this study, Synapse developed a spreadsheet model that estimates payback periods and,
when combined with avoided cost inputs, estimates the cost-effectiveness and cost-shifting associated
with distributed solar. Below we describe the key assumptions and inputs used to produce the results
shown in this report.

Study Period

The study period for modeling purposes was 2016 through 2050 in order to capture the full life of the
solar PV installed during the first five years (assuming a system life of approximately 30 years).

Utility System Attributes

Total residential customers: We assumed a utility system with 1,000,000 residential customers. For

simplicity, we assumed no growth of customers over the study period.

Initial solar PV customers: We assumed 10,000 PV customers for the first year (1 percent of residential

customers).

Customer Load

A typical residential customer load profile for a city in the Southwest based on the Department of
Energy’s Building America House Simulation Protocols was used to model customer energy consumption
prior to installation of a solar PV system. The load profile was downloaded from:
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-

locations-in-the-united-states. The average daily summer and winter loads for the customer are

depicted in Figure 31, below.

For simplicity, this load profile was then assumed to represent the average residential customer, as well
as the average solar customer. However, we note that in many jurisdictions, solar customers may have a
higher-than-average usage profile prior to installing the solar PV system.

Solar PV System

System size: We assumed that the average residential customer installing solar would install a system
sized to offset 88 percent of his or her load, which equates to an average system size of 6.53 kWpc, with
a DCto AC derating factor of 77 percent (based on the standard assumptions in NREL’'s PV Watts
calculator http://rredc.nrel.gov/solar/calculators/pvwatts/system.html). The average summer and

winter generation produced by the system are depicted in Figure 31.

Cost: We assumed an installed cost of $3.85 per watt for 2016, based on the continuation of cost trends
reported by Lawrence Berkeley National Laboratory in Tracking the Sun IX (Barbose and Darghouth
2016). For additional installations for the years 2017-2020, we assumed that costs would continue to
decline at the same average rate as observed over the period 1998-2015.
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In addition, we assumed that the solar PV system would require maintenance over the system life. The
annualized maintenance assumed was $21/watt, based on NREL’s database of distributed generation
technology operations and maintenance costs (available at

http://www.nrel.gov/analysis/tech cost om dg.html).

Figure 31. Average Customer Load and Generation Assumptions
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Avoided Costs

As described elsewhere in the text, the net avoided utility system costs were assumed to be $0.113 per
kilowatt-hour under the low utility avoided cost scenario, while the high net utility avoided cost was
assumed to be $0.155 per kilowatt-hour.

Penetration

Maximum market size: To estimate the maximum potential market size, we used an estimate of 80
percent of residential customers, based on NREL’s estimates of the percentage of small buildings that
are suitable for rooftop solar (Gagnon et al. 2016). In some respects, this represents an optimistic value,
as many of the occupants of these buildings are likely to be tenants, rather than owners. However,
limiting the number of customers due to home ownership status may be overly conservative, as it does
not account for community solar and other forms of virtual net metering.

Market penetration curves: For the purposes of this analysis, the most recent NREL adoption curves for
residential customers were used to estimate the ultimate penetration of distributed solar (Sigrin et al.
2016). See Figure 6 in Section 3 for more information. However, instead of using the ultimate
penetration value, we estimated an interim penetration level, i.e., what the penetration would likely be
after five years, rather than in the long term.

We employed the Bass Diffusion Model (Bass 1969) to estimate the S-curve growth pattern and to
develop an estimate of the five-year penetration level. To specify the S-curve, we assumed that the
maximum would be reached in year 10. For modeling purposes, we followed the S-curve until year five,
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and then held the penetration level constant for the remainder of the study period. For example, the
figure below shows the penetration levels assumed for the alternative compensation scenarios.

Figure 32. Example 5-Year Distributed Solar Growth Assumptions
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