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Abstract

This article considers the seemingly unrelated regression (SUR) model first analyzed by Zellner (1962). We describe

estimators used in the basic model as well as recent extensions.
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Seemingly unrelated regressions

A seemingly unrelated regression (SUR) system comprises several individual relationships that are linked by the fact

that their disturbances are correlated. Such models have found many applications. For example, demand functions can

be estimated for different households (or household types) for a given commodity. The correlation among the equation

disturbances could come from several sources such as correlated shocks to household income. Alternatively, one could

model the demand of a household for different commodities, but adding-up constraints leads to restrictions on the

parameters of different equations in this case. On the other hand, equations explaining some phenomenon in different

cities, states, countries, firms or industries provide a natural application as these various entities are likely to be subject

to spillovers from economy-wide or worldwide shocks.

There are two main motivations for use of SUR. The first one is to gain efficiency in estimation by combining

information on different equations. The second motivation is to impose and/or test restrictions that involve parameters

in different equations. Zellner (1962) provided the seminal work in this area, and a thorough treatment is available in the

book by Srivastava and Giles (1987). A recent survey can be found in Fiebig (2001) . This chapter selectively overviews

the SUR model, some of the estimators used in such systems and their properties, and several extensions of the basic SUR

model. We adopt a Classical perspective, although much Bayesian analysis has been done with this model (including

Zellner’s contributions).

Basic linear SUR model

Suppose that yit is a dependent variable, xit = (1, xit,1, xit,2, ..., xit,Ki−1)
0
is a Ki-vector of explanatory variables for

observational unit i, and uit is an unobservable error term, where the double index it denotes the t
th observation of the

ith equation in the system. Often t denotes time and we will refer to this as the time dimension, but in some applications,

t could have other interpretations, for example as a location in space. A classical linear SUR model is a system of linear

regression equations,

y1t = β01x1t + u1t
...

yNt = β0NxNt + uNt

where i = 1, · · · ,N, and t = 1, ..., T. Denote L = K1+ · · ·+KN . Further simplification in notation can be accomplished by
stacking the observations either in the t dimension or for each i. For example, if we stack for each observation t, let Yt =

[y1t, ..., yNt]
0 , X̃t = diag (x1t, x2t, ..., xNT ) , a block-diagonal matrix with x1t, ..., xNT on its diagonal, Ut = [u1t, ...uNt]

0 ,

and β =
£
β01, ...,β

0
N

¤0
. Then,

Yt = X̃
0
tβ + Ut. (1)
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Another way to present the SUR model is to write it in a form of a multivariate regression with parameter restrictions.

For this, define Xt = [x
0
1t, x

0
2t, ..., x

0
NT ]

0 and A (β) = diag (β1, ...,βN ) to be a (L×N) block diagonal coefficient matrix.
Then, the SUR model in (1) can be rewritten as

Yt = A (β)
0Xt + Ut, (2)

and the coefficient A (β) satisfies

vec (A (β)) = Gβ, (3)

for some (NL× L) full rank matrix G. In the special case where K1 = · · · = KN = K, we have G = diag(i1, . . . , iN )⊗IK ,
where ij denotes the j’th column of the N ×N identity matrix IN .

Assumption:

In the classical linear SUR model, we assume that for each i = 1, ..., N, xi = [xi1, ..., xiT ]
0
is of full rank Ki, and that

conditional on all the regressors X 0 = [X1, ...,XT ] , the errors Ut are iid over time with mean zero and homoskedastic

variance Σ = E (utu
0
t | X) . Furthermore, we assume that Σ is positive definite and denote by σij the (i, j)

th element of

Σ, that is, σij = E (uitujt|X) .
Under this assumption, the covariance matrix of the entire vector of disturbances U 0 = [U1, ..., UT ] is given by

E
£
vec (U) (vec (U))

0¤
= Σ⊗ IT .

Estimation of β:

In this section we summarize four estimators of β that have been widely used in applications of the classical linear

SUR. Other estimators (such as Bayes, empirical Bayes, or shrinkage estimators) have also been proposed. Interested

readers should refer to Srivastava and Giles (1987) and Fiebig (2001) .

1. Ordinary least squares (OLS) estimator:

The first estimator of β is the ordinary least squares (OLS) estimator of Yt on regressor Xt,

β̂OLS =

µXT

t=1
X̃tX̃

0
t

¶−1XT

t=1
X̃tYt.

This is just the vector that stacks the equation-by-equation OLS estimators, β̂OLS =
³
β̂
0
1,OLS , ..., β̂

0
N,OLS

´0
, where

β̂i,OLS =
³PT

t=1 xitx
0
it

´−1PT
t=1 xityit.

2. Generalized least squares (GLS) and feasible GLS (FGLS) estimator:
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When the system covariance matrix Σ is known, the GLS estimator of β is

β̂GLS =

µXT

t=1
X̃tΣ

−1X̃ 0
t

¶−1XT

t=1
X̃tΣ

−1Yt.

When the covariance matrix Σ is unknown, a feasible GLS (FGLS) estimator is defined by replacing the unknown Σ with

a consistent estimate. A widely used estimator of Σ is

Σ̂ = (σ̂ij) ,

where σ̂ij =
1
T

PT
t=1 êitêjt and êkt is the OLS residuals of the k

th equation, that is, êkt = ykt − β̂
0
k,OLSxkt, k = i, j. Then

β̂FGLS =

µXT

t=1
X̃tΣ̂

−1X̃ 0
t

¶−1XT

t=1
X̃tΣ̂

−1Yt.

The FGLS estimator is a two-step estimator where OLS is used in the first step to obtain residuals êkt and an estimator

of Σ. The second step compute β̂FGLS based on the estimated Σ in the first step. This estimator is sometimes referred to

as the restricted estimator as opposed to the unrestricted estimator proposed by Zellner that uses the residuals from an

OLS regression of (2) without imposing the coefficient restrictions (3) , i.e. from regressing each regressand on all distinct

regressors in the system.

3. Gaussian quasi-maximum likelihood estimator (QMLE):

The Gaussian log-likelihood function is

L (β,Σ) = const+
T

2
detΣ− 1

2

XT

t=1

³
Yt − X̃ 0

tβ
´0
Σ−1

³
Yt − X̃ 0

tβ
´
,

or equivalently,

L (β,Σ) = const+
T

2
detΣ− 1

2

XT

t=1

¡
Yt −A (β)0Xt

¢0
Σ−1

¡
Yt −A (β)0Xt

¢
,

where A (β) denotes the coefficient A in (2) with the linear restriction of (3) , and the QMLE
³
β̂QMLE, Σ̂QMLE

´
maximizes

L (β,Σ) . When the vector Ut has a normal distribution, this estimator is the maximum likelihood estimator.

4. Minimum distance (MD) estimator:

The idea of the MD estimator is to obtain an estimator of the unrestricted coefficient A in (2) , Â, and then, obtain

an estimator of β by minimizing the distance between Â and β in (3) . For this, assume that T > L and that the whole

regressor matrix X has full rank L.When Â is the OLS estimator of A (β) , that is, Â =
³PT

t=1XtX
0
t

´−1PT
t=1XtY

0
t , the

optimal MD estimator β̂MD minimizes the optimal MD objective function

QMD (β) =
³
vec

³
Â
´
−Gβ

´0µ
Σ̂−1 ⊗

XT

t=1
XtX

0
t

¶³
vec

³
Â
´
−Gβ

´
.

In this case, we have

β̂MD =

µ
G0
µ
Σ̂−1 ⊗

XT

t=1
XtX

0
t

¶
G

¶−1µ
G0
µ
Σ̂−1 ⊗

XT

t=1
XtX

0
t

¶
vec

³
Â
´¶
.
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Relationship among the estimators:

Some of the above estimators are tightly linked. For example, if we use the same consistent estimator Σ̂, the FGLS

and the MD estimators above are identical, that is, β̂FGLS = β̂MD. Also, if we use the QMLE estimator of Σ, Σ̂QMLE

in place of Σ̂, β̂QMLE is identical to β̂FGLS

³
and to β̂MD

´
. By the Gauss-Markov theorem, the GLS estimator β̂GLS

is more efficient than the OLS estimator β̂OLS when the system errors are correlated across equations. However, this

efficiency gain disappears in some special cases described in Kruskal’s theorem (Kruskal, 1968). A well-known special

case of this theorem is when the regressors in each equation are the same. For other cases, readers can refer Chapter

14 of Greene (2003) and Davidson and MacKinnon (1993, pp. 294-295). The efficiency gain relative to OLS tends to be

larger when the correlation across equations is larger and when the correlation among regressors in different equations is

smaller.

Note also that efficient estimators propagate misspecification and inconsistencies across equations. For example, if

any equation is misspecified (for example some relevant variable has been omitted), then the entire vector β will be

inconsistently estimated by the efficient methods. In this sense, equation-by-equation OLS provides some degree of

robustness since it is not affected by misspecification in other equations in the system.

Distribution of the estimators:

In the literature on the classical linear SUR, the FGLS estimator β̂FGLS is often called the SUR estimator (SURE).

The usual asymptotic analysis of the SURE is carried out when the dimension of index t, T, increases to infinity with the

dimension of index i, N, kept fixed. For asymptotic theories for large N,T, one can refer to Phillips and Moon (1999.

Under regularity conditions, the asymptotic distributions as T →∞ of the aforementioned estimators are:

√
T
³
β̂OLS − β

´
⇒ N

µ
0,
h
E
³
X̃tX̃

0
t

´i−1
E
³
X̃tΣX̃

0
t

´h
E
³
X̃tX̃

0
t

´i−1¶
and

√
T
³
β̂GLS − β

´
,
√
T
³
β̂FGLS − β

´
,
√
T
³
β̂MD − β

´
⇒ N

µ
0,
h
E
³
X̃tΣ

−1X̃ 0
t

´i−1¶
≡ N

³¡
G0
¡
Σ−1 ⊗E (XtX 0

t)
¢
G
¢−1´

.

It is straightforward to show that the SUR estimator using the information in the system is more efficient (has a smaller

variance) than the estimator of the individual equations. Using the above distributional results, it is straightforward to

construct statistics to test general nonlinear hypotheses.

Finite sample properties of SURE have been studied extensively either analytically in some restrictive cases (e.g.

Zellner, 1963, 1972, Kakwani, 1967), by asymptotic expansions (e.g. Phillips, 1977 and Srivastava and Maekawa, 1995) or
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by simulation (e.g Kmenta and Gilbert, 1968). Most work has focused on the two-equation case. The above approximations

appear to be good descriptions of the finite-sample behavior of the estimators analyzed when the number of observations,

T, is large relative to the number of equations, N. In particular, efficient methods provide an efficiency gain in cases where

the correlation among disturbances across equations is high and when correlation among regressors across equations is

low. Non-normality of disturbances has also been found to deteriorate the quality of the above approximations. Bootstrap

methods have also proposed to remedy these documented departures from normality and improve the size of tests.

Extensions

In this section we discuss several extensions of the classical linear SUR model where the assumption on the error terms

is no longer satisfied.

Autocorrelation and heteroskedasticity:

As in standard univariate models, non-spherical disturbances can be accommodated by either modelling the residuals

or computing robust covariance matrices. In addition to standard dynamic effects, serial correlation can arise in this

environment due to the presence of individual effects (see Baltagi, 1980). One could define the equivalent of White (in

the case of heteroskedasticity) or HAC (in the case of serial correlation) standard errors to conduct inference with the

OLS estimator as in the single-equation framework

For efficiency in estimation, some parametric assumption on the disturbance process is often imposed (see Greene,

2003). For example, in the case of heteroskedasticity, Hodgson, Linton, and Vorkink (2002) propose an adaptive estimator

that is efficient under the assumption that the errors follow an elliptical symmetric distribution that includes the normal

as a special case. An intermediate approach is to use a restricted (or parametric) covariance matrix to try to capture

some efficiency gains in estimation,and then use a nonparametric heteroskedasticity and autocorrelation (HAC) consistent

estimator of the covariance matrix to do inference. This two-tier approach (dubbed quasi-FGLS) has been suggested by

Creel and Farell (1996) .

Endogenous regressors:

When the regressor Xt in the SUR model is correlated with the error term Ut, one needs instrumental variables (IVs),

say, Zt = [z
0
1t, ..., z

0
Nt]

0
to estimate β. We suppose that the IVs satisfy the usual rank condition. The GMM estimator (or

the IV estimator), then, utilizes the moment condition

E [vec (ZtU
0
t)] = 0.

The optimal GMM estimator β̂GMM is derived by minimizing the GMM objective function with the optimal choice of
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weighting matrix given by
³
Σ̂⊗

³PT
t=1 ZtZ

0
t

´´−1
,

QGMM (β) =

∙XT

t=1
vec

n
Zt
¡
Yt −A (β)0Xt

¢0o¸0µ
Σ̂⊗

XT

t=1
ZtZ

0
t

¶−1 ∙XT

t=1
vec

n
Zt
¡
Yt −A (β)0Xt

¢0o¸
.

Then, we have

β̂GMM =

⎧⎨⎩G0
Ã
Σ̂⊗

µXT

t=1
XtZ

0
t

¶µXT

t=1
ZtZ

0
t

¶−1µXT

t=1
ZtX

0
t

¶!−1
G

⎫⎬⎭
−1

×G0
(
Σ̂−1 ⊗

µXT

t=1
XtZ

0
t

¶µXT

t=1
ZtZ

0
t

¶−1µXT

t=1
ZtX

0
t

¶)
vec

³
Â2SLS

´
,

where Â2SLS =

½³PT
t=1XtZ

0
t

´³PT
t=1 ZtZ

0
t

´−1 ³PT
t=1 ZtX

0
t

´¾−1 ³PT
t=1XtZ

0
t

´³PT
t=1 ZtZ

0
t

´−1 ³PT
t=1 ZtY

0
t

´
is the two-

stage least squares estimator of A (β) . When Xt is exogenous, so that Xt = Zt, the GMM objective function QGMM (β)

and minimum distance objective function QMD (β) are identical, and we conclude that β̂GMM = β̂MD.

Vector autoregressions:

When the index t in the SUR model denotes time and the regressors xit include lagged dependent variables, the

classical linear SUR model becomes a vector autoregression model (VAR) with exclusion restrictions. In this case, the

regressors X are no longer strictly exogenous, and the assumption in the previous section is violated. A special case is

when the order of the lagged dependent variables is one. In this case, for {yit}t to be stationary, it is necessary that
the absolute value of the coefficient of yit−1 is less than one. If the coefficient of yit−1 is one, {yit}t is nonstationary.
Nonstationary SUR VAR models have been used in developing tests for unit roots and cointegration in panels with cross-

sectional dependence, see for example Chang (2004), Groen and Kleibergen (2003) and Larsson, Lyhagen, and Lothgren

(2001).

Seemingly unrelated cointegration regressions:

When the non-constant regressors in Xt are integrated nonstationary variables but the errors in Ut are stationary,

we call model (1) (or equivalently (2)) a seemingly unrelated cointegration regression model, see Park and Ogaki (1991),

Moon (1999), Mark et al (2005), and Moon and Perron (2004). These papers showed that for efficient estimation of β, an

estimator of the long-run variance of Ut, not of the spontaneous covariance Σ as in the previous section, should be used

in FGLS. In addition some modification of the regression is necessary when the integrated regressors and the stationary

errors are correlated. Empirical applications in the main references include tests for purchasing power parity, the relation

between national saving and investment, and tests of the forward rate unbiasedness hypothesis.

Nonlinear SUR (NSUR):
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An NSUR model assumes that the conditional mean of yit given xit is nonlinear, say hi (β, xit) , that is, yit =

hi (β, xit) + uit.Defining H (β,Xt) = (h1 (β, x1t) , ..., hN (β, xNt)) , we write the NSUR model in a multivariate nonlinear

regression form,

Yt = H (β,Xt) + Ut.

In this case, we may estimate β using (quasi) MLE assuming that Yt are Gaussian conditioned on Xt or GMM utilizing

the moment condition that E [g (Xt)U
0
t ] = 0 for any measurable transformation g of Xt.
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