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Abstract: This paper deals with a kernel extension of a @mgn paper entitled “newriterion
based PLS path modeling approach to structuraltesumodeling” [Tenenhaus, 2009] which will
be presented during the PLS’09 conference.
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1. Introduction

Throughout this papekX,,X,,...,X; are matrices with columns defined by centered abies
observed on the same setroindividuals andky, K5, ..., K; the associated kernel matrices. Let us
notep; the number of variables for the blokk We are interested in studying the relation betwee
blocks of variable«, X,, ..., X; even though those data sets live in different apad/e achieve this
by projecting the/ blocks ontoj separate directions specified by veatgra,, ..., a;, to obtain/
univariate variables on which “link” (such as caaace) can be computed easily. In this paper is
presented a kernel version of a companion papetleent’A criterion based PLS approach to
structural equation modelling” [Tenenhaus and Taaes, 2009] which will be presented during the
PLS’09 conference. The paper is organized as falidhe first part briefly introduces the primal
formulation of the proposed method and the secamdip devoted to its dual formulation.

2. Thegeneral optimization problem (primal form)

In this paper, the following general problem is sidered:

J

J
{al, a,, ...,a]} = argmax ZZ Cij g (cov(Xiai,Xjaj))
al,az,...,a] i1 j=1

(1)
subject to the constraints(1 — 7,)var (X;a;) + 7 ||g || = 1, j=1, ...,
whereg(x) = x (Horst Scheme)g(x) = x? (factorial scheme) qg(x) = |x| (centroid scheme).

The regularisation parameterse [0, 1], j =1, ..., J control the stability of the solution (specifigall
useful in a high dimensional block context) anckipblate smoothly between the maximisation of
the covariance (alt;s’ = 1) and the maximisation of the correlation @k’ = 0). TheJ x ] design
matrix (C);; = ¢;; equals to 1 if the block; and X, are connected and to O otherwise allows to

immediatly extend the multiblock data analysis feavork to the structural equation modelling one
by limiting the sommation to connected blocks. Bake of simplicity, in this part of the paper, we



focus our presentation on the Horst scheme. Apglyitre Lagrangian multiplier technique to the
optimization of (1) gives upstationary equations:
-1
J
1 1 _, , )
a; = (1_Tl')ZXiXi+Tini XiZCi]-X]-a]-, L = 1,...,]

JZIXM7X[Z;

M; /=1

It is noteworthy thaiv; is well-conditionned (even in high dimensional dd(s) context) since the
empirical covariance matricerrllsX{Xl- i =1,...,] are shrunk gradually towards the identity matrices
and are singular and thus invertible. To solve tp8mization problem is applied an iterative “PLS
style” algorithm based on the Wold procedure [WdAld82] which is monotonically convergent that
means that the bounded criterion to be maximizethéseasing at each step of the procedure
[Hanafi, 2007]. However, it is still remain diffituto apply such a Wold algorithm in a high
dimensional block context due to the inversion attmeesM; of dimensiorp; X p;,i =1, ...,J and

we propose in the next section to reformulate #hgorithm in its dual form leading to the Kernel
PLS path modelling.

3. Kerned PLS path modelling

Let us assume that; can be expressed as a linear combination of tiseretions of blockX;
(which is always possible). Throughout this sectiinus noter; = X;a; andk; = X;X; the matrix

of inner product between pairs of observationslothX; (Gram matrix). We consider also the QR-
decomposition of the matriX; = Q;R; whereQ; is an orthonormal matrix angj arank(X;) x n
upper triangular matrix. This gives the followingadmposition for the kernel matrky = R;R;. As
suggested by [Bach and Jordan, 2002 ; Shawe-TaghbCristianini, 2004], an incomplete cholesky
decomposition oK; is used to obtaiR;.

Now the primal formulation of the general optimieat problem described previously can be

formulated in its dual form as follows:
7

{ay, ay, ..., a;} = argmax Z z Cijg (cov(Xl-Xi’ai,Xij’aj))

0(1,0(2,...,0(] i1 j=1
subject to the constraints(1 — 7, Jvar(X;X/a;) + 7| X/ || = 1, j=1,..,]
To simplify the presentation, we focus on the H&stieme d(x) = x)

— 1$J ] ’
= {al,az, ...,a]} = argmax ;Zi=1zj=1 cija;KiKja;
aq,0z,...,0]

subject to the constraintsy; <(1 — Tj)%sz + ijj> =1 j=1..3

We note that this maximization problem is expressaty in terms of kernel matrices. The
regularisation parameters not only makes this dpéition problem well posed numerically but also
provide control over the capacity of the functiggase where the solution is sought. The larger the



values oft; are, the less sensitive the method to the inpiat daand the more stable (less prone to
finding spurious relations) the solution becomes.

= {ay, @y, ..., a;} = argmax —Z 1Z§=1 a;R{R;R;R;a;

aq,az,.. a]

subject to the constraintsy; <(1 - rj) ~RiR;R;R; + rjR]ij> a=1, j=1, ..,

Let us notew; = R;a; andn; = rank(X;)

S {Wl,WZ, . W]} = argmax —Z] 121 1 WiR;Rjw; (2)
Wiq,Wy,.. W]
subject to the constraints; (( r]) RiR} + 7;I, )w] 1, j=1,..,3 (3)

A 3-step procedure is proposed to maximize (2)estthip (3):

(1)  Construct the Lagrangian function related to th&imeation problem.

J J

]
1 1
L= z z CU;W{RLR]’W] Z ((1 l);WL,RLRL’Wl + TiWi,Wi - 1)

i=1j=1 i=1
wherel;, i = 1, ...,] are the Lagrangian multiplier.

(2) Define stationary equations by cancelling and sifyipg the derivatives of the
Lagrangian function.

(3) Find a solution of thg stationary equations by using a PLS style iteeafivocedure
(derived to the Wold procedure which guaranty tlematonic convergence).

It is worth pointing out that for specific valuektbe regularization parameters, the proposed ndetho
provides as particular cases (and among others):

» For the 2 blocks cases: Kernel PLS [Rosipal e2801] ¢; = 7, = 1), Kernel Redundancy
Analysis [Takane and Hwang, 2007] which is equintl® Kernel PLS for discrimination
[Rosipal et al., 2003]t{ = 1 and 7, = t), Kernel Canonical Correlation Analysis [e.g. Bach
and Jordan, 2002f{ = 1; and 7, = 1,).

* For the J blocks cases: a “Horst” Generalized Ke@@A with the flavour of the one
proposed by [Bach and Jordan, 2002 ; Shawe-TayidrGristianini, 2004] dll 7;s" = 1; ;
Horst scheme).



Moreover, our general optimisation problem providesregularized” kernel extension of the
Kettenring's generalized CCAl( t;s’ = 7; and Factorial scheme).

4. Conclusion

In this paper we present a very general optimimgpimblem covering a large spectrum of methods.
This paper provides a criterion point of view o tALS path modelling framework.

To the best of our knowledge, all the Kernel CCAsi@n proposed by the machine learning
community does not consider other scheme than thstldne. In this paper, we explore the factorial
and the centroid scheme which sound more reasondigle the number of block is greater than 2.
Moreover, the introduction of the design matrixoals analysing data where all blocks are not
necessarily connected.

To conclude this paper, we note that by using moeal kernel such as Gaussian or polynomial
kernel, we can assess non linear relation betwkak$
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