
Learning with Large Datasets

Léon Bottou

NEC Laboratories America

Why Large-scale Datasets?

• Data Mining

Gain competitive advantages by

analyzing data that describes the life of

our computerized society.

• Artificial Intelligence

Emulate cognitive capabilities of humans.

Humans learn from abundant and diverse data.

The Computerized Society Metaphor

• A society with just two kinds of computers:

←
Makers do business and generate

revenue. They also produce data

in proportion with their activity.

Thinkers analyze the data to

increase revenue by finding

competitive advantages.

→

• When the population of computers grows:

– The ratio #Thinkers/#Makers must remain bounded.

– The Data grows with the number of Makers.

– The number of Thinkers does not grow faster than the Data.

Limited Computing Resources

• The computing resources available for learning

do not grow faster than the volume of data.

– The cost of data mining cannot exceed the revenues.

– Intelligent animals learn from streaming data.

•Most machine learning algorithms demand resources

that grow faster than the volume of data.

– Matrix operations (n3 time for n2 coefficients).

– Sparse matrix operations are worse.

Roadmap

I. Statistical Efficiency versus Computational Cost.

II. Stochastic Algorithms.

III. Learning with a Single Pass over the Examples.

Part I

Statistical Efficiency versus

Computational Costs.

This part is based on a joint work with Olivier Bousquet.

Simple Analysis

• Statistical Learning Literature:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Literature:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Therefore:

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.

Problem solved.”

The purpose of this presentation is. . .

Too Simple an Analysis

• Statistical Learning Literature:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Literature:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Therefore: (error)

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.

Problem solved.”

. . . to show that this is completely wrong !

Objectives and Essential Remarks

• Baseline large-scale learning algorithm

Randomly discarding data is the simplest

way to handle large datasets.

– What are the statistical benefits of processing more data?

– What is the computational cost of processing more data?

• We need a theory that joins Statistics and Computation!

– 1967: Vapnik’s theory does not discuss computation.

– 1981: Valiant’s learnability excludes exponential time algorithms,

but (i) polynomial time can be too slow, (ii) few actual results.

– We propose a simple analysis of approximate optimization. . .

Learning Algorithms: Standard Framework

• Assumption: examples are drawn independently from an unknown

probability distribution P (x, y) that represents the rules of Nature.

• Expected Risk: E(f) =
∫

ℓ(f (x), y) dP (x, y).

• Empirical Risk: En(f) = 1
n

∑

ℓ(f (xi), yi).

•We would like f∗ that minimizes E(f) among all functions.

• In general f∗ /∈ F.

• The best we can have is f∗F ∈ F that minimizes E(f) inside F.

• But P (x, y) is unknown by definition.

• Instead we compute fn ∈ F that minimizes En(f).

Vapnik-Chervonenkis theory tells us when this can work.

Learning with Approximate Optimization

Computing fn = arg min
f∈F

En(f) is often costly.

Since we already make lots of approximations,

why should we compute fn exactly?

Let’s assume our optimizer returns f̃n

such that En(f̃n) < En(fn) + ρ.

For instance, one could stop an iterative

optimization algorithm long before its convergence.

Decomposition of the Error (i)

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error

+ E(fn)− E(f∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Problem:

Choose F, n, and ρ to make this as small as possible,

subject to budget constraints

{

maximal number of examples n
maximal computing time T

Decomposition of the Error (ii)

Approximation error bound: (Approximation theory)

– decreases when F gets larger.

Estimation error bound: (Vapnik-Chervonenkis theory)

– decreases when n gets larger.

– increases when F gets larger.

Optimization error bound: (Vapnik-Chervonenkis theory plus tricks)

– increases with ρ.

Computing time T : (Algorithm dependent)

– decreases with ρ

– increases with n

– increases with F

Small-scale vs. Large-scale Learning

We can give rigorous definitions.

•Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

•Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T .

Small-scale Learning

The active budget constraint is the number of examples.

• To reduce the estimation error, take n as large as the budget allows.

• To reduce the optimization error to zero, take ρ = 0.

•We need to adjust the size of F.

Size of F

Estimation error

Approximation error

See Structural Risk Minimization (Vapnik 74) and later works.

Large-scale Learning

The active budget constraint is the computing time.

•More complicated tradeoffs.

The computing time depends on the three variables: F, n, and ρ.

• Example.

If we choose ρ small, we decrease the optimization error. But we

must also decrease F and/or n with adverse effects on the estimation

and approximation errors.

• The exact tradeoff depends on the optimization algorithm.

•We can compare optimization algorithms rigorously.

Executive Summary

log (ρ)

log(T)

ρ decreases faster than exp(−T)

ρ decreases like 1/T

Extraordinary poor
optimization algorithm

Good optimization algorithm (superlinear).

Mediocre optimization algorithm (linear).
ρ decreases like exp(−T)

Best ρ

Asymptotics: Estimation

Uniform convergence bounds (with capacity d + 1)

Estimation error ≤ O

([

d

n
log

n

d

]α)

with
1

2
≤ α ≤ 1 .

There are in fact three types of bounds to consider:

– Classical V-C bounds (pessimistic): O

(

√

d
n

)

– Relative V-C bounds in the realizable case: O

(

d

n
log

n

d

)

– Localized bounds (variance, Tsybakov): O

([

d

n
log

n

d

]α)

Fast estimation rates are a big theoretical topic these days.

Asymptotics: Estimation+Optimization

Uniform convergence arguments give

Estimation error + Optimization error ≤ O

([

d

n
log

n

d

]α

+ ρ

)

.

This is true for all three cases of uniform convergence bounds.

Scaling laws for ρ when F is fixed

The approximation error is constant.

– No need to choose ρ smaller than O
([

d
n log n

d

]α)

.

– Not advisable to choose ρ larger than O
([

d
n log n

d

]α)

.

. . . Approximation+Estimation+Optimization

When F is chosen via a λ-regularized cost

– Uniform convergence theory provides bounds for simple cases

(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; . . .)

– Computing time depends on both λ and ρ.

– Scaling laws for λ and ρ depend on the optimization algorithm.

When F is realistically complicated

Large datasets matter

– because one can use more features,

– because one can use richer models.

Bounds for such cases are rarely realistic enough.

Luckily there are interesting things to say for F fixed.

Case Study

Simple parametric setup

– F is fixed.

– Functions fw(x) linearly parametrized by w ∈ R
d.

Comparing four iterative optimization algorithms for En(f)

1. Gradient descent.

2. Second order gradient descent (Newton).

3. Stochastic gradient descent.

4. Stochastic second order gradient descent.

Quantities of Interest

• Empirical Hessian at the empirical optimum wn.

H =
∂2En

∂w2
(fwn) =

1

n

n
∑

i=1

∂2ℓ(fn(xi), yi)

∂w2

• Empirical Fisher Information matrix at the empirical optimum wn.

G =
1

n

n
∑

i=1

[

(

∂ℓ(fn(xi), yi)

∂w

) (

∂ℓ(fn(xi), yi)

∂w

)′
]

• Condition number

We assume that there are λmin, λmax and ν such that

– trace
(

GH−1
)

≈ ν.

– spectrum
(

H
)

⊂ [λmin, λmax].

and we define the condition number κ = λmax/λmin.

Gradient Descent (GD)

Iterate

• wt+1← wt − η
∂En(fwt)

∂w

Gradient J

Best speed achieved with fixed learning rate η = 1
λmax

.

(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

GD O(nd) O
(

κ log 1
ρ

)

O
(

ndκ log 1
ρ

)

O
(

d2 κ
ε1/α log2 1

ε

)

– In the last column, n and ρ are chosen to reach ε as fast as possible.

– Solve for ε to find the best error rate achievable in a given time.

– Remark: abuses of the O() notation

Second Order Gradient Descent (2GD)

Iterate

• wt+1← wt −H−1 ∂En(fwt)

∂w

Gradient J

We assume H−1 is known in advance.

Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2GD O
(

d
(

d + n
))

O
(

log log 1
ρ

)

O
(

d
(

d + n
)

log log 1
ρ

)

O
(

d2

ε1/α log 1
ε log log 1

ε

)

– Optimization speed is much faster.

– Learning speed only saves the condition number κ.

Stochastic Gradient Descent (SGD)

Iterate

• Draw random example (xt, yt).

• wt+1← wt −
η

t

∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Best decreasing gain schedule with η = 1
λmin

.
(see Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

SGD O(d) ν k
ρ + o

(

1
ρ

)

O
(

d ν k
ρ

)

O
(

d ν k
ε

)

With 1 ≤ k ≤ κ2

– Optimization speed is catastrophic.
– Learning speed does not depend on the statistical estimation rate α.
– Learning speed depends on condition number κ but scales very well.

Second order Stochastic Descent (2SGD)

Iterate

• Draw random example (xt, yt).

• wt+1← wt −
1

t
H−1 ∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Replace scalar gain
η

t
by matrix

1

t
H−1.

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2SGD O
(

d2
) ν

ρ + o
(

1
ρ

)

O
(

d2 ν
ρ

)

O
(

d2 ν
ε

)

– Each iteration is d times more expensive.

– The number of iterations is reduced by κ2 (or less.)

– Second order only changes the constant factors.

Part II

Learning with Stochastic

Gradient Descent.

Benchmarking SGD in Simple Problems

• The theory suggests that SGD is very competitive.

– Many people associate SGD with trouble.

• SGD historically associated with back-propagation.

– Multilayer networks are very hard problems (nonlinear, nonconvex)

– What is difficult, SGD or MLP?

• Try PLAIN SGD on simple learning problems.

– Support Vector Machines

– Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd.

These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)

Text Categorization with SVMs

• Dataset

– Reuters RCV1 document corpus.

– 781,265 training examples, 23,149 testing examples.

– 47,152 TF-IDF features.

• Task

– Recognizing documents of category CCAT.

– Minimize En =
1

n

∑

i

(

λ

2
w2 + ℓ(w xi + b, yi)

)

.

– Update w ← w − ηt∇(wt, xt, yt) = w − ηt

(

λw +
∂ℓ(w xt + b, yt)

∂w

)

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.

Text Categorization with SVMs

• Results: Linear SVM
ℓ(ŷ, y) = max{0, 1− yŷ} λ = 0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

• Results: Log-Loss Classifier
ℓ(ŷ, y) = log(1 + exp(−yŷ)) λ = 0.00001

Training Time Primal cost Test Error

LibLinear (ε = 0.01) 30 secs 0.18907 5.68%
LibLinear (ε = 0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

The Wall

50

100

0.2

0.3

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

Testing cost

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost)

LibLinear

SGD

More SVM Experiments

From: Patrick Haffner

Date: Wednesday 2007-09-05 14:28:50

. . . I have tried on some of our main datasets. . .

I can send you the example, it is so striking!

– Patrick

Dataset Train Number of % non-0 LIBSVM LLAMA LLAMA SGDSVM
size features features (SDot) SVM MAXENT

Reuters 781K 47K 0.1% 210,000 3930 153 7
Translation 1000K 274K 0.0033% days 47,700 1,105 7
SuperTag 950K 46K 0.0066% 31,650 905 210 1
Voicetone 579K 88K 0.019% 39,100 197 51 1

More SVM Experiments

From: Olivier Chapelle

Date: Sunday 2007-10-28 22:26:44

. . . you should really run batch with various training set sizes . . .

– Olivier

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 10 100 1000

Time (seconds)

Average Test Loss

1

n=30000
n=100000

n=300000
n=781265

stochastic

n=10000

Log-loss problem

Batch Conjugate
Gradient on various
training set sizes

Stochastic Gradient
on the full set

Text Chunking with CRFs

• Dataset

– CONLL 2000 Chunking Task:

Segment sentences in syntactically correlated chunks

(e.g., noun phrases, verb phrases.)

– 106,978 training segments in 8936 sentences.

– 23,852 testing segments in 2012 sentences.

• Model

– Conditional Random Field (all linear, log-loss.)

– Features are n-grams of words and part-of-speech tags.

– 1,679,700 parameters.

Same setup as (Vishwanathan et al., 2006) but plain SGD.

Text Chunking with CRFs

• Results

Training Time Primal cost Test F1 score

L-BFGS 4335 secs 9042 93.74%
SGD 568 secs 9098 93.75%

• Notes

– Computing the gradients with the chain rule runs faster than

computing them with the forward-backward algorithm.

– Graph Transformer Networks are nonlinear conditional random fields

trained with stochastic gradient descent (Bottou et al., 1997).

Choosing the Gain Schedule

Decreasing gains: wt+1← wt −
η

t + t0
∇(wt, xt, yt)

• Asymptotic Theory

– if s = 2 η λmin < 1 then slow rate O
(

t−s)

– if s = 2 η λmin > 1 then faster rate O
(

s2

s−1 t−1
)

• Example: the SVM benchmark

– Use η = 1/λ because λ ≤ λmin.

– Choose t0 to make sure that the expected initial updates

are comparable with the expected size of the weights.

• Example: the CRF benchmark

– Use η = 1/λ again.

– Choose t0 with the secret ingredient.

The Secret Ingredient for a good SGD

The sample size n does not change the SGD maths!

Constant gain: wt+1← wt − η ∇(wt, xt, yt)

At any moment during training, we can:

– Select a small subsample of examples.

– Try various gains η on the subsample.

– Pick the gain η that most reduces the cost.

– Use it for the next 100000 iterations on the full dataset.

• Examples

– The CRF benchmark code does this to choose t0 before training.

– We could also perform such cheap measurements every so often.

The selected gains would then decrease automatically.

Getting the Engineering Right

The very simple SGD update offers lots of engineering opportunities.

Example: Sparse Linear SVM

The update w ← w − η
(

λw −∇ℓ(wxi, yi)
)

can be performed in two steps:

i) w ← w − η∇ℓ(wxi, yi) (sparse, cheap)

ii) w ← w (1− ηλ) (not sparse, costly)

• Solution 1

Represent vector w as the product of a scalar s and a vector v.

Perform (i) by updating v and (ii) by updating s.

• Solution 2

Perform only step (i) for each training example.

Perform step (ii) with lower frequency and higher gain.

SGD for Kernel Machines

• SGD for Linear SVM

– Both w and ∇ℓ(wxt, yt) represented using coordinates.

– SGD updates w by combining coordinates.

• SGD for SVM with Kernel K(xi, xj) = < Φ(xi), Φ(xj) >

– Represent w with its kernel expansion
∑

αi Φ(xi).

– Usually, ∇ℓ(wxt, yt) = −µ Φ(xt).

– SGD updates w by combining coefficients:

αi ←− (1− ηλ) αi +

{

η µ if i = t,
0 otherwise.

• So, one just needs a good sparse vector library ?

SGD for Kernel Machines

• Sparsity Problems.

αi ←− (1− ηλ) αi +

{

η µ if i = t,
0 otherwise.

– Each iteration potentially makes one α coefficient non zero.

– Not all of them should be support vectors.

– Their α coefficients take a long time to reach zero (Collobert, 2004).

• Dual algorihms related to primal SGD avoid this issue.

– Greedy algorithms (Vincent et al., 2000; Keerthi et al., 2007)

– LaSVM and related algorithms (Bordes et al., 2005)

More on them later. . .

• But they still need to compute the kernel values!

– Computing kernel values can be slow.

– Caching kernel values can require lots of memory.

SGD for Real Life Applications

A Check Reader

Examples are pairs (image,amount).

Problem with strong structure:

– Field segmentation

– Character segmentation

– Character recognition

– Syntactical interpretation.

• Define differentiable modules.

• Pretrain modules with hand-labelled data.

• Define global cost function (e.g., CRF).

• Train with SGD for a few weeks.

Industrially deployed in 1996. Ran billions of checks over 10 years.

Credits: Bengio, Bottou, Burges, Haffner, LeCun, Nohl, Simard, et al.

Part III

Learning with a Single Pass

over the Examples

This part is based on joint works with

Antoine Bordes, Seyda Ertekin, Yann LeCun, and Jason Weston.

Why learning with a Single Pass?

• Motivation

– Sometimes there is too much data to store.

– Sometimes retrieving archived data is too expensive.

• Related Topics

– Streaming data.

– Tracking nonstationarities.

– Novelty detection.

• Outline

– One-pass learning with second order SGD.

– One-pass learning with kernel machines.

– Comparisons

Effect of one Additional Example (i)

Compare

w∗n = arg min
w

En(fw)

w∗n+1 = arg min
w

En+1(fw) = arg min
w

[

En(fw) +
1

n
ℓ
(

fw(xn+1), yn+1
)

]

n+1w* nw*

E (f)

E
n+1
n

(f)wn+1

n w

Effect of one Additional Example (ii)

• First Order Calculation

w∗n+1 = w∗n −
1

n
H
−1
n+1

∂ ℓ
(

fwn(xn), yn
)

∂w
+ O

(

1

n2

)

where Hn+1 is the empirical Hessian on n + 1 examples.

• Compare with Second Order Stochastic Gradient Descent

wt+1 = wt −
1

t
H−1 ∂ ℓ

(

fwt(xn), yn
)

∂w

• Could they converge with the same speed?

Yes they do! But what does it mean?

• Theorem (Bottou & LeCun, 2003; Murata & Amari, 1998)

Under “adequate conditions”

lim
n→∞

n ‖w∗∞ − w∗n‖
2 = lim

t→∞
t ‖w∞ − wt‖

2 = tr(H−1G H−1)

lim
n→∞

n
[

E(fw∗n
)− E(fF)

]

= lim
t→∞

t
[

E(fwt)− E(fF)
]

= tr(G H−1)

Best training
set error.

≅

Best solution in F.

Empirical
Optima

One Pass of
Second Order
Stochastic
Gradient wn

n

K/n

w
0 0
= w*

∞w ∞=w*

w*

Optimal Learning in One Pass

Given a large enough training set,

a Single Pass of Second Order Stochastic Gradient

generalizes as well as the Empirical Optimum.

Experiments on synthetic data

1000 10000 100000

Mse*
+1e−4

Mse*
+1e−3

Mse*
+1e−2

Mse*
+1e−1

100 1000 10000
0.342

0.346

0.350

0.354

0.358

0.362

0.366

Number of examples Milliseconds

Unfortunate Practical Issues

• Second Order SGD is not that fast!

wt+1← wt −
1

t
H−1 ∂ℓ(fwt(xt), yt)

∂w

– Must estimate and store d× d matrix H−1.

– Must multiply the gradient for each example by the matrix H−1.

– Sparsity tricks no longer work because H−1 is not sparse.

• Research Directions

Limited storage approximations of H−1.

– Reduce the number of epochs

– Rarely sufficient for fast one-pass learning.

– Diagonal approximation (Becker &LeCun, 1989)

– Low rank approximation (e.g., LeCun et al., 1998)

– Online L-BFGS approximation (Schraudolph, 2007)

Disgression: Stopping Criteria for SGD

2SGD SGD

Time to reach accuracy ρ

ν

ρ
+ o

(

1

ρ

)

k ν

ρ
+ o

(

1

ρ

)

Number of epochs to reach

same test cost as the full

optimization.

1 k

1 ≤ k ≤ κ2

There are many ways to make constant k smaller:

– Exact second order stochastic gradient descent.

– Approximate second order stochastic gradient descent.

– Simple preconditionning tricks.

Disgression: Stopping Criteria for SGD

• Early stopping with cross validation

– Create a validation set by setting some training examples apart.

– Monitor cost function on the validation set.

– Stop when it stops decreasing.

• Early stopping a priori

– Extract two disjoint subsamples of training data.

– Train on the first subsample; stop by validating on the second.

– The number of epochs is an estimate of k.

– Train by performing that number of epochs on the full set.

This is asymptotically correct and gives reasonable results in practice.

One-pass learning for Kernel Machines?

Challenges for Large-Scale Kernel Machines:

– Bulky kernel matrix (n× n.)

– Managing the kernel expansion w =
∑

αi Φ(xi).

– Managing memory.

Issues of SGD for Kernel Machines:

– Conceptually simple.

– Sparsity issues in kernel expansion.

Stochastic and Incremental SVMs:

– Iteratively constructing the kernel expansion.

– Which candidate support vectors to store and discard?

– Managing the memory required by the kernel values.

– One-pass learning?

Learning in the dual

Max margin

A

B Min distance
between hulls

• Convex, Kernel trick.

•Memory nnsv

• Time nαnsv with 1 < α ≤ 2

• Bad news nsv ∼ 2Bn

(see Steinwart, 2004)

• nsv could be much smaller.

(Burges, 1993; Vincent & Bengio, 2002)

• How to do it fast?

• How small?

An Inefficient Dual Optimizer

P N

N’

• Both P and N are linear combinations of examples

with positive coefficients summing to one.

• Projection: N ′ = (1− γ)N + γ x with 0 ≤ γ ≤ 1.

• Projection time proportional to nsv.

Two Problems with this Algorithm

• Eliminating unwanted Support Vectors

γ = 0

γ = 1

γ = − α / (1−α) Pattern x already has α > 0.

But we found better support vectors.

– Simple algo decreases α too slowly.

– Same problem as SGD in fact.

– Solution: Allow γ to be slightly negative.

• Processing Support Vectors often enough

When drawing examples randomly,

– Most have α = 0 and should remain so.

– Support vectors (α > 0) need adjustments but are rarely processed.

– Solution: Draw support vectors more often.

The Huller and its Derivatives

• The Huller

Repeat
PROCESS: Pick a random fresh example and project.
REPROCESS: Pick a random support vector and project.

– Compare with incremental learning and retraining.

– PROCESS potentially adds support vectors.

– REPROCESS potentially discard support vectors.

• Derivatives of the Huller

– LASVM handles soft-margins and is connected to SMO.

– LARANK handles multiclass problems and structured outputs.

(Bordes et al., 2005, 2006, 2007)

One Pass Learning with Kernels

Time and Memory

� � � � � � � � � � � � 	 � � � � � �
 � 	 � �
 �
 � � � � � �� � � � � � � � � � � � � � � � �� � ! � " #$ � � � � � % & ' (() *)) +% & ' (() *) +, � � � � % & ' (() * -� % & ' (() * +. � � � � �/ � � � � � % & ' ((-� � � � 0 1 23 / � � � � � / 4 � / . 5 . � 6 5 / . 7 5 6 $ 5 , . 5 / 6 5 7 5 $ 5 . 5

8
9 :

; < => ?

LibSVM LaSVM 2SGD SGD

Time n s n s n d2 n d k

Memory n r r2 d2 d

Careless comparisons: n≫ s≫ r and r ≈ d

Are we there yet?

– Handwritten digits recognition with on-the-fly

generation of distorted training patterns.

– Very difficult problem for local kernels.

– Potentially many support vectors.

– More a challenge than a solution.

Number of binary classifiers 10
Memory for the kernel cache 6.5GB
Examples per classifiers 8.1M
Total training time 8 days
Test set error 0.67%

– Trains in one pass: each example gets only one chance to be selected.

– Maybe the largest SVM training on a single CPU. (Loosli et al., 2006)

Are we there yet?

29x29 input

5x
5

co
nv

olu
tio

na
l la

ye
r

5 (15x15) layers
50 (5x5) layers 100 hidden units

10 output units

fu
ll c

on
ne

cti
on

fu
ll c

on
ne

cti
on

5x
5

co
nv

olu
tio

na
l la

ye
r

Training algorithm SGD
Training examples ≈ 4M.
Total training time 2-3 hours
Test set error 0.4%

(Simard et al., ICDAR 2003)

• RBF kernels cannot compete with task specific models.

• The kernel SVM is slower because it needs more memory.

• The kernel SVM trains with a single pass.

Conclusion

• Connection between Statistics and Computation.

•Qualitatively different tradeoffs for small– and large–scale.

• Plain SGD rocks in theory and in practice.

•One-pass learning feasible with 2SGD or dual techniques.

Current algorithms still slower than plain SGD.

• Important topics not addressed today:

Example selection, data quality, weak supervision.

	Title slide
	Why Large-scale Datasets?
	The Computerized Society Metaphor
	Limited Computing Resources
	Roadmap
	I Statistical Efficiency versus Computational Costs.
	Simple Analysis
	Too Simple an Analysis
	Objectives and Essential Remarks
	Learning Algorithms: Standard Framework
	Learning with Approximate Optimization
	Decomposition of the Error (i)
	Decomposition of the Error (ii)
	Small-scale vs. Large-scale Learning
	Small-scale Learning
	Large-scale Learning
	Executive Summary
	Asymptotics: Estimation
	Asymptotics: Estimation+Optimization
	…Approximation+Estimation+Optimization
	Case Study
	Quantities of Interest
	Gradient Descent (GD)
	Second Order Gradient Descent (2GD)
	Stochastic Gradient Descent (SGD)
	Second order Stochastic Descent (2SGD)

	II Learning with Stochastic Gradient Descent.
	Benchmarking SGD in Simple Problems
	Text Categorization with SVMs
	Text Categorization with SVMs
	The Wall
	More SVM Experiments
	More SVM Experiments
	Text Chunking with CRFs
	Text Chunking with CRFs
	Choosing the Gain Schedule
	The Secret Ingredient for a good SGD
	Getting the Engineering Right
	SGD for Kernel Machines
	SGD for Kernel Machines
	SGD for Real Life Applications

	III Learning with a Single Pass over the Examples
	Why learning with a Single Pass?
	Effect of one Additional Example (i)
	Effect of one Additional Example (ii)
	Yes they do! But what does it mean?
	Optimal Learning in One Pass
	Unfortunate Practical Issues
	Disgression: Stopping Criteria for SGD
	Disgression: Stopping Criteria for SGD
	One-pass learning for Kernel Machines?
	Learning in the dual
	An Inefficient Dual Optimizer
	Two Problems with this Algorithm
	The Huller and its Derivatives
	One Pass Learning with Kernels
	Time and Memory
	Are we there yet?
	Are we there yet?

