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Abstract.

Non-linear hierarchical models are commonly used in many disciplines. How-
ever, inference in the presence of non-nested effects and on large datasets is chal-
lenging and computationally burdensome. This paper provides two contributions
to scalable and accurate inference. First, I derive a new mean-field variational algo-
rithm for estimating binomial logistic hierarchical models with an arbitrary num-
ber of non-nested random effects. Second, I propose “marginally augmented vari-
ational Bayes” (MAVB) that further improves the initial approximation through
a step of Bayesian post-processing. I prove that MAVB provides a guaranteed
improvement in the approximation quality at low computational cost and induces
dependencies that were assumed away by the initial factorization assumptions.

I apply these techniques to a study of voter behavior using a high-dimensional
application of the popular approach of multilevel regression and post-stratification
(MRP). Existing estimation took hours whereas the algorithms proposed run in
minutes. The posterior means are well-recovered even under strong factorization
assumptions. Applying MAVB further improves the approximation by partially
correcting the under-estimated variance. The proposed methodology is imple-
mented in an open source software package.

Keywords: hierarchical models, variational Bayes, marginal augmentation,
scalable statistical methodology.

1 Introduction and Motivating Example

Hierarchical models, often known as multilevel, mixed, or random effects models, are
ubiquitous in the social sciences (Gelman and Hill 2006; Rabe-Hesketh and Skrondal
2008). In political science alone, these models are used for addressing unobserved hetero-
geneity, explicitly modeling dependence between observations, allowing effects to vary
across space or time, and many other applications (e.g. Clark and Linzer 2015; Bell and
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2 Fast Estimation of Binomial Hierarchical Models

Jones 2015; Steenbergen and Jones 2002; Stegmueller 2013). They are also popular in
other fields such as educational research and psychology.

The benefits and challenges of these models can be illustrated by an increasingly
popular application for survey research in social science: Multilevel Regression and
Post-Stratification (MRP; Gelman and Little 1997; Park et al. 2004; Gao et al. 2020).
Described in more detail in Section 5, the core purpose of this method is to extrapolate
outcomes from nationally representative surveys to small geographic areas with limited
data (e.g. city, state, or legislative district) using (i) a rich hierarchical model fit on the
national survey and the (usually) binary or binomial outcome and (ii) post-stratification
of predicted values based on the underlying population. This method has been widely
applied to a variety of questions such as measuring public opinion on a wide variety of
policies, examining ideology at the city level, and exploring determinants of vote choice
and turnout decisions (e.g. Ghitza and Gelman 2013; Lax and Phillips 2009a, 2012;
Buttice and Highton 2013; Tausanovitch and Warshaw 2014).

Early applications of these models usually additively included reasonable number of
non-nested effects (e.g. four), but subsequent work noted the inability of such models to
capture the rich complexity of the data (Ghitza and Gelman 2013). That paper increased
the complexity of the model substantially by using eighteen mostly non-nested random
effects and thus specifying a model with thousands of parameters. More broadly, the idea
of using a more complex model has led to a variety of papers implementing more complex
hiearchical models (Gelman et al. 2016; Gao et al. 2020) or relying on machine learning
methods (Bisbee 2019; Ornstein 2020; Goplerud et al. 2018). Regardless of whether one
relies on a “traditional” MRP or a recent extension, it is clear that comparing multiple
specifications in a principled way is fundamental to performing reliable inference. Given
the long history and popularity of using traditional hierarchical models when performing
MRP, it is essential that there is a method to fit those models reliably and quickly given
computational constraints for many practitioners.

Unfortunately, inference for non-linear hierarchical models—especially at the com-
plexity needed to be competitive with machine learning alternatives—can be challenging
as the likelihood function contains an intractable, high-dimensional, integral. There are
two popular methods for applied researchers (Stegmueller 2013): First, one can ap-
proximate the integral numerically (e.g. Bates et al. 2015; Rabe-Hesketh et al. 2004).
Second, one can use a fully Bayesian approach and sample from the joint distribution
of all of the parameters of the model (e.g. Carpenter et al. 2017). The key downside of
these methods is that they can be slow even on modestly sized problems, and thus it is
challenging to get estimates of reasonable quality in a modest period of time. This is a
problem of “scalability” to the large and complex models required for many empirical
applications. A key downside of non-scalable models is that common techniques such
as K-fold cross-validation or bootstrapping are prohibitively expensive.

This paper makes two contributions to tackling this problem. First, I outline a
series of new variational algorithms based on Polya-Gamma augmentation that allow
coordinate ascent variational inference to be implemented for binomial logistic regression
for an arbitrary number of (non-nested) random effects while imposing only a mean-
field factorization assumption. This extends existing work on variational methods for
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this class of model, as there does not appear to be a tailored algorithm to estimate
models with more than two non-nested random effects.! Further, the algorithm can be
implemented without assuming independence between the “fixed” (i.e. fully pooled) and
random effects.

Second, I outline a generic procedure for improving an initial variational approxi-
mation when a parameter expansion of the underlying Bayesian model exists. I do this
by drawing a connection to “marginal augmentation” from the Markov Chain Monte
Carlo literature (e.g. Liu and Wu 1999; Van Dyk and Meng 2001) and showing that this
parameter expansion often permits a nearly costless improvement of the initial approx-
imation. The method (“marginally augmented variational Bayes”—MAVB) transforms
the initial approximation by sampling the expansion parameter and re-transforming
the original samples while maintaining the stationarity of the target posterior. This
induces dependencies between the parameters that were assumed away in estimating
the initial procedure and provides a provable guaranteed improvement upon the original
approximation.

Methodologically, this pushes forward the literature on variational inference for hi-
erarchical models by extending work in the case of a single random effect (Hall et al.
2011; Ormerod and Wand 2012; Tan and Nott 2013; Hall et al. 2019) or two non-nested
random effects (Jeon et al. 2017; Menictas et al. 2019) to the general case. The pro-
posed method requires no integration, unlike many existing methods for binary outcomes
(Ormerod and Wand 2012; Tan and Nott 2013; Jeon et al. 2017). It further provides a
link to existing work that seeks to combine Markov Chain Monte Carlo and variational
inference by stochastic optimization (e.g. Salimans et al. 2015; Ruiz and Titsias 2019;
Yin and Zhou 2018). Instead of optimizing the transformed density, MAVB transforms
the samples from the initial approximation with a partial step of MCMC using marginal
augmentation that, in practice, appears as performing a stochastic location/scale trans-
formation of the sampled parameters. This leverages a sampler that is known to mix well
in the case of fully Bayesian MCMC and lacks internal tuning parameters as its primary
goal is to find a computationally inexpensive way to improve an initial approximation.
While it bears some similarities to work on re-parameterization in hierarchical models
for variational algorithms (e.g. Tan and Nott 2013; Tan 2021), it does not fix the re-
parameterization in advance of estimation. It differs from other approaches that seek to
improve an initial approximation (e.g. linear response variational Bayes; Giordano et al.
2015) in that it has a guarantee on improving the approximation quality. Future work
could examine how such methods work alongside Polya-Gamma data augmentation.

The remainder of the paper proceeds as follows. Section 2 states multiple factor-
ization assumptions under which Polya-Gamma augmentation can be used to estimate
a variational approximation for a binomial logistic hierarchical model. Section 3 links
parameter expansion to variational Bayes and explains MAVB formally.

Sections 4 and 5 conduct simulations and examine performance on the empirical
example (Ghitza and Gelman 2013). The latter shows dramatic gains in speed: Even

LGeneric methods for variational inference, e.g. stochastic variational inference or automatic differ-
entiation variational inference (ADVI; Kucukelbir et al. 2017), can be applied to most models, including
hierarchical ones. I compare ADVI against my “tailored” algorithms and show it performs worse.
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after applying MAVB and drawing 4,000 samples, the fastest variational algorithm is
nearly 60 times faster than Laplace approximation and nearly 350 times faster than
Hamiltonian Monte Carlo for the most complex models. This reduces the run time from
hours to minutes. All variational methods well-recover the posterior means. While the
strongest factorization assumptions have poor performance in terms of estimating the
posterior variance, applying MAVB corrects a large amount of the problem.

Section 5 then uses this algorithm to engage in model comparison that was com-
putationally infeasible in Ghitza and Gelman (2013). I perform 10-fold cross-validation
across nine models ranging from having four to 18 random effects and thousands of
parameters. The process takes around 30 minutes compared to the hours needed to fit
even a single model once using existing approaches. The results provide some evidence
of over-fitting in the original specification suggesting that the most complex model does
not outperform models of intermediate complexity. I use this to draw out some guidance
for practitioners of MRP in other substantive domains.

2 Mean-Field Variational Inference for Binomial
Hierarchical Models

I focus on the following generative model that is broader than MRP but also captures the
majority of applications. For each observation ¢ € {1,---, N}, the researcher observes
y; “successes” out of n; trials (e.g. how many individuals in a population of size n;
turn out to vote). I model this using a binomial distribution with probability of success
p; defined via a linear predictor (1;) put through a logistic link. Equation 1 expresses
this model using a “general design” notation (Zhao et al. 2006). Appendix A shows the
model using Gelman and Hill (2006)’s notation and a plate diagram.

. GXP(%') T T
i|3, a ~ Binom(n;, p;), g = ————— i =x; B+ 2z o la
vil B (ni,pi), P T+ oxp(0) (e B (1a)
aj|2j ~ N (O,Igj ® EJ) s ZJ‘ ~ IW(Z/j,i’j), p(ﬁ) [o¢ 1 (lb)
Zij =M & zzl?,j7 a’ = [a{v co ,(X?], z? = [2:3:1, T 7Zi7:J] (1(3)

As is standard in hierarchical models, the linear predictor consists of p “fixed” effects:
x; € RP. The hierarchical component contains J random effects indexed from j €
{1,---,J}. For each random effect j, there is a d; dimensional covariate vector indexed
by zi—” ; where zfy ; = 1 represents the ubiquitous “random intercept.” Each random effect
has g; groups and each observation i is assigned to exactly one group for each random
effect; define its membership for random effect j as a one-hot vector m; ; € {0,1}9.

The notation in Equation 1 stacks together the hierarchical components as follows;
first, for each random effect j, z; ; represents a d; x g; length vector (mostly sparse)
by the Kronecker product (®) of the group membership vector m; ; and the base co-
variate. This repeats zf,j once in the position corresponding to the group of which i is
a member for random effect j. This allows us to model the distribution of the entire
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parameter vector for random effect j (a; € R%°%) as a multivariate normal with a
block diagonal matrix where each block is given an identical Inverse Wishart prior as
noted in Equation 1b (£; € R%*%; &, € R%*4). Using such priors is standard in
the literature on variational inference for hierarchical models (e.g. Tan and Nott 2013),
although extensions to more weakly informative priors are possible (e.g. Huang and
Wand 2013). The compact notation in Equation la stacks together all random effects j

into a single vector z; € RE5=19% that is highly sparse. It thus accommodates designs
with arbitrary patterns of crossing (non-nesting) amongst the J random effects.

A key distinguishing feature of this model as applied to MRP is that J can be large
(e.g. greater than ten) and g; ranges widely from a handful up to over a thousand (e.g.
g; = 4 for ethnicity and g; = 1,020 for state-ethnicity-age combinations in Ghitza and
Gelman 2013). In most applications for MRP, d; = 1 and zf,j = 1 (random intercept)
but sometimes d; = 2 in the case of a random slope and intercept (Gelman and Hill
2006). Regarding the other parameters, for most applications of MRP, N is often rela-
tively modest given post-stratification requirements (see Section 5) and that surveys can
be collapsed into units with identical state-demographic covariates by allowing varying
n;. Thus, in many studies, N can be made smaller than 10,000 (e.g. below 5,000 in Park
et al. 2004; Ghitza and Gelman 2013). The size of 8 (p) is also usually modest and
below ten.

By using Polya-Gamma augmentation, the model in Equation 1 can be rendered
conditionally conjugate, enabling the straightforward application of numerous standard
algorithms for Bayesian inference (Polson et al. 2013). Specifically, Equation 2 from
Polson et al. (2013) states that for any a,b > 0 the following identity holds, where
fra(wlb, ¢) denotes the Polya-Gamma density with parameters b and c¢. The definition of
a Polya-Gamma variable as a weighted infinite convolution of Gamma random variables
is also shown.

m = 27b/exp(5¢ — % /2w) fpa(w|b,0)dw, s=a—b/2 (2a)
o~ PG == 5 2 G 1/z>2Z oy A Gamma(b1) - (2b)

k=1

Thus, the complete data likelihood can be expressed as follows where €2 denotes
the N x N diagonal matrix of the corresponding w;, X, Z stack the data for each
observation into a N X p and N X ijl d;jg; design matrices, and s is a N x 1 vector
with [3]1 =Y — n1/2

N
bl D, 8) x oxp (s[X0 + Za] - [XB-+ Zal” QX8+ Za] ) ] frceafni.0

- 3)
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Noting the result from Polson et al. (2013) that the full conditional of w; |y, o, 8, {%; }‘j’:1
has a Polya-Gamma distribution PG(n;,z! 8 + zl'a), it immediately follows that a
Gibbs Sampler exists to sample all of the parameters in the model where the full con-
ditionals on 3 and a are normal and X; is Inverse Wishart.

2.1 Variational Inference

The first contribution of this paper is to use the Polya-Gamma representation above to
find a tractable variational algorithm to approximate the joint posterior of p(3, o, {X,}, 2|y)
and thus the joint posterior on the parameters excluding €. Blei et al. (2017) provides
a recent review of these methods. Equation 4 formulates the problem where X denotes
some (restricted) set of distributions to optimize over. It can be equivalently expressed
as finding the closest distribution in X to the true posterior in terms of KL-divergence.

For notational simplicity, denote 8 = {8, a, {X;}7_,, 2}

q*(0) = ar(%ni)( ELBOy) where ELBOyg) = Ey@) [Inp(y, 0)] — Ey0) [Inq(0)] (4)
q0)c

A common method for solving this problem is known as “coordinate ascent varia-
tional inference” (CAVI; Blei et al. 2017). It maximizes or increases the target ELBO
with respect to some sub-block of 8. By cycling through 8 repeatedly, a local optimum
can be obtained. The choice of restriction X is crucial to the accuracy of the approxi-
mation method; an extremely popular choice is a “mean-field” factorization assumption
where blocks of parameters are assumed to be independent.

Leveraging the existence of a Gibbs Sampler, Result 1 states that the augmented
posterior on ¢(0) can be approximated using a number of mean-field assumptions with
no further restrictions on distributional form, all updates having closed analytical forms,
and for arbitrary J,d;, g;. Appendix A provides the full derivations as well as noting
how to back out the corresponding Gibbs Sampler.

Result 1 (Existence of CAVI). Consider the three factorization assumptions:

Scheme I: “Strong Factorization”  — X1 = q(83) H‘j]:l q(o)q(X)q(2)
Scheme II:  “Partial Factorization” — X = q(8)q(a)q(X)q(2)
Scheme III:  “Limited Factorization” — X3=q(8,a)q(X)q(S2)

For the model in Equation 1 and for each choice of Xj, above, each step of the CAVI
algorithm can be implemented exactly in closed form, with no additional assumptions.
For each Xy, the optimal approzimation for q(B,a) is multivariate normal, q(X) is
the product of J independent Inverse Wishart densities, and q(S) is the product of N
independent Polya-Gammas.

Algorithm 1 explicitly outlines the updates for Scheme I. Experiments showed that
convergence could be improved at little computational cost by jointly updating the mean
parameters of ¢(3) and g(a); see Appendix C for discussion. All models estimated in
the paper use this acceleration technique.
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Algorithm 1 CAVI for Scheme I

Set Priors of Inverse Wishart: {v;, ®; }3]:1; Set Number of Iterations: T

Initialize Variational Parameters: {i)z, &N, (for Polya-Gamma); i3, Ag, fro, Ay
(fOI‘ ,6,0(), {f/ﬁéj}}]:l (fOI‘ 2])
Fortinl,.---,T

1. Update Polya-Gammas - ¢ ({w; }Y.1): b; = n;, & = \/Eq(a’g) (T8 + 2zl a)?]

2. Update q(8) ~ N(fig, Ag):

N -1 N
~ _ ~ n;
Ap = (Z Eq(w”[wi]mim?) . fp=AsX" (Z (y - 5) — Egupwi] - 2 Bya) [a]>

i=1 =1

3. Update ¢ (a;) ~ N(fta,j, Ajya), where T stacks the block diagonal expectation

of the precision on the random effects (2;1):

N —1
Aoj= (TJ + ZEq(wi)[wi}zi,szJ Ty = By, I, @ 25
=1

N
~ T n;
oy = Aoy Z0 |3 (0= %)~ Bl - (2l By 81+ Y. 2l Byay e
i=1 31, TN
4. Update ¢ ({2,}/2,): 7 = vi + g5, @5 = @5+ i1, Eg(a, ) [@)00] ]
5. Check for convergence, evaluate ELBO (see Appendix A for derivation).

This improves upon existing mean-field schemes for logistic hierarchical models in
a number of ways. First, for any of the factorization assumptions, no further distri-
butional assumptions are required (cf. Ormerod and Wand 2012; Tan and Nott 2013
assuming normality). Second, most existing algorithms for binomial outcomes require
the repeated evaluation of (low) dimensional integrals at each iteration whose number
scales with g; (cf. Ormerod and Wand 2012; Tan and Nott 2013; Jeon et al. 2017).
Extending these algorithms to J > 2 would likely incur significant computational costs
as the number of those integrals increases. None of the schemes in Result 1 require inte-
gration at any step as the Polya-Gamma augmentation turns inference into iteratively
performing weighted ridge regression. In the models considered in this paper, the major
bottleneck as one moves from Scheme I to Scheme III is in calculating the variance term
of ¢(B, a); even relying on a (sparse) Cholesky decomposition, this involves inverting
an increasingly dense lower triangular matrix as weaker independence assumptions are
imposed. Appendix E disaggregates the run-time of Algorithm 1 by stage and scheme.

Most importantly, the ability to choose between Schemes I, II, and III allows the
researcher to smoothly trade-off computational cost and accuracy as in Menictas et al.
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(2019)’s work on J = 2 for linear mixed effects models. Scheme I with its strong im-
plied factorization assumptions is immediately scalable to huge datasets with large J
or g;. However, the downside is that the strong factorization assumptions will likely
degrade performance. Scheme III provides the ability to avoid these strong assumptions
at a somewhat increased computational cost. The ability to avoid such factorization
assumptions for arbitrary J > 1 and binomial outcomes appears to be a new result.
The expectation is that it will have the best performance. Scheme II is a compromise
between the two extremes, and other hybrid approaches are possible such as applying
re-parameterizations to the augmented posterior (e.g. Tan and Nott 2013; Tan 2021).

3 Marginally Augmented Variational Bayes

The second major contribution of the paper is demonstrating that there is a compu-
tationally cheap way of improving the initial approximation resulting from Schemes I,
II, or III. The key intuition, formalized below, is that once an initial approximation
q(0) is found, one can draw samples from this approximation, perform a single step of
Markov Chain Monte Carlo through (some of) the parameters, and thereby “improve”
the sample. Some existing work in computer science (e.g Salimans et al. 2015; Ruiz
and Titsias 2019) has leveraged this point to attempt to optimize over the intractable
improved density which can be computationally expensive.

By contrast, this paper explores the idea that if one can find a transition kernel with
good mixing, then simply doing a single partial step can provide considerable gains at
limited computational cost. While many samplers can be employed for this purpose,
initial experiments suggested that the key problem was the independence assumptions
in ¢(8, &) and thus I chose to focus on marginal augmentation and parameter expansion
as it is inexpensive to use in fully Bayesian MCMC to improve a Gibbs Sampler, has
demonstrated strong performance in hierarchical models, lacks internal tuning parame-
ters, and was explicitly designed to link the fixed and random effects together (Liu and
Wu 1999; Van Dyk and Meng 2001; Gelman et al. 2008). I focus on logistic hierarchical
models although the procedure is itself much more general; Section 6 discusses some
broader implications and Appendix B formulates the results in a more general fashion.

The key idea behind parameter expansion is to create an “over-parameterized” model
where certain additional parameters (€) are introduced such that they (i) maintain
the observed data model but (ii) are not identifiable from the observed data itself. A
careful choice of parameter expansion allows the construction of algorithms that have
either faster mixing for MCMC (Liu and Wu 1999; Van Dyk and Meng 2001) or faster
convergence for deterministic algorithms such as EM (Liu et al. 1998). The intuition
behind its effectiveness is that it allows “moves” (either via sampling steps in MCMC or
parameter updates in EM) in the un-identified space that can break or escape the strong
associations between parameter blocks (e.g. 8 and «) that slow down mixing (Liu and
Wu 1999) or lead to the algorithm getting “stuck” for many iterations near boundary
conditions (e.g. a small sampled X; shrinking o 4 leading to a small X;, etc.; Gelman
et al. 2008). Liu et al. (1998) provide a useful explanation of parameter expansion in
the context of EM as a “covariance adjustment” to the estimated parameters.
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In the case of hierarchical models, the most popular parameter expansion appears as
a location and/or scale transformation of the random effects (e.g. Van Dyk and Meng
2001). The location transformation, for example, allows the random effects to have a
non-zero mean: o g ~ N (g, 3;). Note that it is not possible to estimate p; from the
observed data but that it could be estimated if o, were known. Implementation is
simple and appears as a location or scale transformation of the sampled parameters
that leads to very large gains in performance (e.g. Van Dyk and Meng 2001; Gelman
et al. 2008).

Definition 1 generalizes this parameter expansion to the arbitrary J case, where the
M notation is bookkeeping to note which element of «; (and 3) corresponds to each
element of 2! ; (and ag).

Definition 1 (Expansions for Hierarchical Models). Define a set of expansion parame-
ters & that consists, for each j, of a mean shift p; € R% and a scale shift R; € R%*%
such that R; is invertible. I use superscript X to denote the “expanded” parameters.

The mapping between 0% and 0 for a fized & is denoted as t¢(0) and listed below.
M; is a p x dj matriz such that (M., = 1 if the covariate corresponding to [2; ;] is
the same as the covariate for [x;]q. All other elements of M are zero. For simplicity,
assume that each element of z; corresponds to some variable in x;, i.e. that each column
of M has exactly one non-zero element.

B=pY+Y M;Ru,

J _ X X X\ J X _ ) &y, :R’(O‘)',(_H‘>
[ﬁvaa{zj}j:bﬂ] _tﬁ([ﬁ y & ’{xj }jzlvn ])_ Ejjg: RJJEJXIJ%;% ’

Q=0%
The augmented model is listed below for an important special case treated in detail

(“Mean Ezxpansion”) in the empirical analysis. The full expansion (“Translation Expan-
sion”) is also listed.

e Mean Expansion: Assume all R; = I, .

Inp(y;|ws, B%, aX) x sT[XBX + ZaX] — 1/2[XB% + ZaX|TQ[XBX + ZaX]
p(BX) 1, af |=X,~ N (u;,=5), p(EF) ~ IW (v, ®;)
e Translation Fxpansion:
Inp(ys|ws, B5, o) x sT[XBX + ZRa™X]| — 1/2[XB* + ZRaX|TQ[X B + ZRa™]
R = blockdiag ({I;, ® R;}/_,), p(B¥)x1, oaf|Zf ~N(p;, )
p(ZX) ~IW(v;, R;'®;R; ")

Given such an expanded version of the hierarchical model, there are two ways to
improve the algorithms in this paper. First, drawing on Jaakkola and Qi (2007), it is
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possible to accelerate convergence of Algorithm 1 using “parameter expanded variational
Bayes” (PX-VB). Appendix C derives a new application of PX-VB to the models in
Result 1 and shows it can often improve the algorithm’s convergence by decreasing the
number of iterations required at effectively no computational cost as, functionally, it
involves centering the random effects to be mean zero and adjusting the mean of ¢(3)
correspondingly.

The main use of parameter expansions in this paper, however, is to improve the
quality of the approximation by “improving” ¢(8) by performing one step of marginal
augmentation where the expansion parameters £ are sampled and then the components
of 8 are re-sampled. Definition 2 outlines the procedure in a general case. The notation
and procedure mirrors that in Liu and Wu (1999).

Definition 2 (Marginally Augmented Variational Bayes—MAVB). Given an initial
approximation q(0), a proper prior on the expansion parameter po(€), and a one-to-one
and differentiable transformation such that t¢(6~) = 0, create a new approzimation
G(0) using the following procedure:

1. Sample 8 ~ q(0) and & ~ po(€).
2. Create 0% = tgol(ﬂ).

3. Sample a new & as follows where J¢ (0%) is the Jacobian of te with respect to 0x
and p(0|y) denotes the true posterior distribution.

& ~p (€107, y) < p(te(0%)]y) - [Je(07)] - po(€)
4. Define 6 = tg, (%) = te, (tgol(e))

Theorem 1 states a key result for MAVB.

Theorem 1 (Guaranteed Improvement with MAVB). For any (proper) choice of prior
po(&), the MAVB approzimation ¢(0) has a better ELBO than the initial approximation:

ELBOj(g) > ELBO g

The proof is in Appendix B and uses two lemmas from existing results. First, The-
orem 1 in Liu and Wu (1999) demonstrates the transformation to generate MAVB
maintains the stationarity of the posterior. Second, a data processing inequality noted
by various authors (e.g. Ruiz and Titsias 2019) showing that this transformation which
keeps the true posterior invariant results in a better approximating distribution.

It is known from the data augmentation literature that an increasingly diffuse prior
on the expansion parameters (“working prior”) allows for the parameters themselves to
“decide” the best expansion parameter £ rather than being weighed down by the prior
(e.g. Liu and Wu 1999, p. 1268), and I conjecture that a similar intuition applies for
MAVB. Thus, in all applications, I use an improper prior (i.e. po(§) x 1); Appendix B
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discusses the validity of this prior using existing theory (Liu and Wu 1999; Van Dyk and
Meng 2001), provides the result for a proper prior on &, and notes Algorithm 2 can be
found as the limit of a proper working prior po(p;) ~ N(0,72I) as 7 — oo. Algorithm 2
shows how MAVB is implemented using the mean expansion noted in Definition 1.2

Algorithm 2 Applying MAVB to Non-Linear Hierarchical Models
Set the Number of Samples Desired: M
Estimate ¢(0) using CAVI (e.g. Algorithm 1)
Forminl,--- M
1. Draw 8™ ~ ¢(8)
2. Sample the expansion parameters p; for each j

L& ) L m)

95 o=

3. Adjust the initial draws to get the improved sample 6(m)

J
&y = oy — . B =B+ My

Jj=1

Thus, for this model and relying only on a location transformation, MAVB has
a simple form that, as shown later, can result in considerable improvements in the
performance of Scheme I. As noted in the earlier discussion, the presentation of MAVB
in Algorithm 2 illustrates the close relationship to the location transformation noted
earlier: It can be thought of a “stochastic” location transformation given that mean of
the expansion parameter is the mean of the sampled o 4.

Some additional remarks are in order: First, if MAVB is applied to an approximation
resulting from Scheme I (i.e. with independence assumed between 8 and ), the result-
ing approximation will not imply such an assumption. Consider the correlation between
o, and B in Algorithm 2. Before applying MAVB, the two parameters are indepen-
dent by assumption. After applying MAVB, they have a non-zero posterior correlation
because of the shared dependence on fi;. While not sufficient to restore all missing
dependencies (e.g. components of 3 that are not included in any random effect), this
can at least address some of the shortcomings of Scheme I. MAVB can be applied to
the outputs of Scheme II and III, although the expectation is that the improvement
for these schemes should be less pronounced given that more of those dependencies are
estimated directly.

Second, the cost of implementing MAVB is quite modest, unlike existing approaches
that attempt to optimize over the improved density (e.g. Ruiz and Titsias 2019). After

2MAVB for “Translation Expansion” (i.e. R; is not fixed) is more delicate and thus not explored
here, as it requires a specific choice of prior on X; and a specific choice of improper working prior to
be tractable; see Van Dyk and Meng (2001) for details. Examining whether this could be used with
proper priors is an interesting area for future research.
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drawing a sample from ¢(0), all that is needed to perform MAVB is drawing Zj d;
univariate Gaussians (22 in the largest model considered in this paper [Model 9]), some
summation of the sampled random effects and then subtracting off the sampled ex-
pansion parameter fi;. Note that this MAVB procedures do not require sampling the
Polya-Gammas as they are left un-transformed by the algorithm nor does the cost of
MAVB depend on the size of the data (IV) directly; even if g; is large, MAVB will still
be fast.

Third, while MAVB is guaranteed to increase performance, the quality of MAVB
is difficult to ascertain analytically in most complex models. However, insights come
from simpler cases: In a stylized hierarchical model, Liu and Wu (1999) show that
marginal augmentation results in perfect sampling. In the more realistic case where X
is not fixed and J = 1, studies show that certain forms of marginal augmentation result
vastly improved mixing of MCMC samplers (Van Dyk and Meng 2001; Gelman et al.
2008). Thus, there is reason to be optimistic about the ability of MAVB to improve
initial approximations as the scale/location transformations in fully Bayesian marginal
augmentation seem to provide quite considerable benefits over simple Gibbs samplers.

Overall, while MAVB is likely to be helpful in improving the variational schemes in
this paper, it is not a panacea. Its major benefit appears to be in “connecting” blocks of
parameters that were assumed to be independent in a way that is guaranteed to improve
the approximation quality at a very limited computational cost. The key limitation is
that its speed and scalability depends on it not returning to the observed data (y).
Interestingly, this suggests a “stronger” version of MAVB that could be performed by
implementing one full sweep of the Gibbs Sampler, i.e. sampling Polya-Gammas and
cycling through all full conditionals, and then performing marginal augmentation. If this
were to be performed many times, the samples would converge to the true posterior by
standard properties of MCMC. While this might raise its own computational concerns,
exploring this is an interesting area of future research.

4 Simulation Study

I perform a simulation study to assess the accuracy of the proposed methods. I compare
my variational algorithms against two gold standards (Laplace approximation using
blme - Bates et al. 2015; Chung et al. 2015; HMC in STAN using brms; Biirkner 2017) and
Automatic Differentiation Variational Inference (ADVI; Kucukelbir et al. 2017).% The
latter is a useful comparison as it is easily implemented in STAN and is a generic approach
to approximate complex models. I show results using its mean-field approximation (MF)
and full rank (FR). To begin, I conducted a simulation where the linear predictor ;
was generated using the following scheme (J = 2).

3Using blme allows for an identical Inverse Wishart prior to be added to the Laplace approximation;
models are fit using optimx’s nlminb algorithm (Nash and Varadhan 2011) that returned noticeably
better performance. brms generates a model that can be manually adapted to place an Inverse Wishart
prior as this is not permitted in the default options in pre-written STAN models at the time of writing
(e.g. rstanarm or brms).
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Draw the fixed effects 3 ~ N(0,[0.2)? Io)

For each group g € {1,---,10}, draw the random intercept ay,4 ~ N(0,1)
For each group ¢’ € {1,---,10}, draw the random intercept as 4 ~ N (0, 1)
For each observation i € {1,---,1000}, assign at random to groups g, g’. Draw

its fixed effect z; ~ N(0,%) where 3, ; = 0.5F=7': 55" € {1,--- ,10}. Draw y;
such that:

exp(zl'B + ai,gpi) + 2,971
1+ exp(®] B+ a1 g + az,4/))

yi ~ Bern(p;), pi=

All models are fit with a standard Inverse Wishart prior of IW(d; + 1;1,,) on X;.
I run each variational algorithm until the change in the ELBO is less than 10~ or the
largest parameter changes by less than 10~°. For the HMC and MAVB methods, I draw
4,000 samples from the (approximate) posterior.

Table 1 reports four measures of performance; the first two measures compare the
point estimates (posterior mean) against HMC. The third measure compares the full
posterior using a measure of “accuracy” that modifies the integrated absolute error
(e.g. Faes et al. 2011). Formally, this is defined as 1 — 3 [*°_[gx(6) — gunc(0)[d6. T use
kernel density estimation with a range over the shared support of the samples (bkde,
KernSmooth; Wand and Ripley 2020) and then approximate the integral. Finally, to
understand how the estimates of uncertainty fare against the unknown truth, I examine
the “frequentist coverage”: Does an interval of + 1.96 times the standard deviation of
the parameter contain the truth? A value of around 0.95 would indicate correct coverage
at the expected frequentist level.

The results are promising; looking at the bias and RMSE, the variational methods
perform well; they have very small bias against the means estimated from HMC and an
RMSE that is quite small, comparable to the Laplace approximation, and out performs
both ADVI implementations.

Examining accuracy and frequentist coverage shows more separation across the
methods. The accuracy and coverage of Scheme I are noticeably lower than the Laplace
approximation. However, applying MAVB results in noticeable improvements in accu-
racy (around 6% for fixed effects; and nearly 25% for random effects) and increases
coverage by similar amounts to near nominal levels. After this improvement, Scheme I
is comparable to the best approximate method (Laplace approximation) having slightly
lower accuracy for the fixed effects but noticeably better accuracy and coverage for the
random effects. Scheme II has somewhat better initial performance but is also boosted
considerably by applying MAVB.

Scheme III—the factorization that does not assume independence between ¢(cx)
and ¢(B)—performs nearly as well as the Laplace approximation (and better in terms
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Table 1: Results from Simulations
Bias RMSE Accuracy Coverage

FE RE FE RE FE RE FE RE

Laplace -0.000 0.005 | 0.007 0.056 | 0.966 0.847 | 0.950 0.878

HMC 0.949 0.960

ADVI (MF) -0.002 0.003 | 0.041 0.074 | 0.775 0.781 | 0.796 0.830

ADVI (FR) -0.000 0.001 | 0.048 0.108 | 0.921 0.881 | 0.969 0.948

Scheme 1 -0.000 0.004 | 0.007 0.034 | 0.870 0.706 | 0.862 0.736

Scheme 11 -0.000 0.004 | 0.007 0.030 | 0.870 0.844 | 0.862 0.871

Scheme IIT ~ -0.000 0.004 | 0.007 0.026 | 0.936 0.948 | 0.923 0.934

Scheme 1 -0.000 0.004 | 0.008 0.034 | 0.932 0.948 | 0.922 0.938

MAVB + Scheme II -0.001 0.005 | 0.007 0.031 | 0.933 0.955 | 0.916 0.940
Scheme IIT ~ -0.000 0.004 | 0.007 0.027 | 0.937 0.963 | 0.922 0.942

Note: This reports the bias (Bias), root mean squared error (RMSE) of the estimated posterior means
against those estimated from HMC. The distance between the distributions (Accuracy) and frequentist
coverage (Coverage) are reported; see the main text for an explanation of these measures. The statistics
are disaggregated by fixed (FE) and random effects (RE). All results are created using all relevant
parameters in each simulation and then averaged across one hundred simulations. ADVI (MF) uses the
mean-field approximation; ADVI (FR) uses the full rank approximation in Kucukelbir et al. (2017).

of the random effects) before applying MAVB. Applying MAVB results in only slight
improvements (e.g. a 1-2% boost in accuracy and coverage for the random effects).

Appendix D conducts additional simulations. First, I vary the magnitude of the true
coefficients by changing the variance of the fixed and random effects. After applying
MAVB, the coverage of the variational methods is near nominal (i.e. above 0.90) in
all cases except when the variance of the true distribution of the fixed effects is larger
where MAVB is insufficient to obtain nominal coverage on the fixed effects (0.80-0.85)
although the coverage on the random effects remains good. While this is worthy of
future exploration, I conjecture this occurs because of the large magnitudes of the linear
predictors (with 5-95% interval of around -5.9 to 5.5 vs. -2.7 and 2.3 in the simulations
in Table 1) and the highly bimodal distribution of p;. It may be that a pass over the
observed data and one full sweep of MCMC (discussed in Section 3 as a “stronger”
MAVB) could result in more significant improvements in coverage.

Second, to examine simulations in a more realistic case, I fit a simple MRP model on
the data from Ghitza and Gelman (2013) with random effects for age, income, ethnicity
and state (Model 1 from Table 2, below) and take the parameter estimates from the
Laplace approximation as “ground truth” to create simulated outcomes. It shows a
similar pattern although with weaker performance across the board—Scheme I after
applying MAVB outperforms ADVI (Mean Field) across all measures with noticeable
improvements in accuracy (10%) and is comparable to ADVI (Full Rank). Scheme IIT
performs the best of all approximate methods, including beating the Laplace and ADVI
(Full Rank). The values of the linear predictor are relatively modest in this case (90%
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of the HMC posterior means are between -0.67 and 1.99) and more comparable to
those in the simulations in Table 1. This provides further evidence that for reasonably
sized linear predictors, the variational approximations perform well and are improved
by MAVB.

Finally, I examine the sensitivity of the algorithm to initial values to see if there is
evidence of arriving at different local optima. I find little evidence of this for the models
considered in this paper given reasonable random initializations, although researchers
should check for this in their own applications.

5 Application: Estimation for Complex MRP

This section re-analyses the results in Ghitza and Gelman (2013) where I compare my
results against Hamiltonian Monte Carlo (HMC). I then conduct 10-fold cross-validation
using Scheme I to examine which model seems to be most appropriate to use for the
final predictive task. I find that, contrary to the decision in Ghitza and Gelman (2013),
a model with intermediate complexity is preferred.

5.1 Brief Explanation of MRP

Before proceeding, I provide a brief explanation of MRP (see, e.g. Park et al. 2004;
Lax and Phillips 2009b; Ghitza and Gelman 2013 for more detailed explanations). The
key problem is that while it is easy to gather a representative survey at the national
level, it is very expensive to gather a sufficiently large and representative survey at sub-
national units (e.g. states) or sub-types of respondents (e.g. by race, education, income,
their interactions, etc.). Further, the number of observations in any sub-group may be
very small, rendering a direct analysis of their values unreliable (Lax and Phillips 2009b;
Warshaw and Rodden 2012; Buttice and Highton 2013). However, the most substantively
important questions exactly rely on drawing inferences about those sub-groups. MRP
provides a model-based procedure to attempt to reliably estimate these sub-group effects
by providing a principled way to extrapolate the nationally representative survey.

MRP is a two-step procedure. First, the researcher estimates a hierarchical model
(“multilevel regression”) on the initial survey including covariates such as demographic
characteristics and indicators for the relevant geographic unit (e.g. state) to get esti-
mates for various “types” of respondents (e.g. age-income-ethnicity by state). The hier-
archical model usually has a binomial or binary outcome. The second step calculates the
expected response for each demographic-state profile. These can be examined directly
or aggregated to get a measure of opinion at the desired geographic level (e.g. state).
The aggregation or “post-stratification” occurs by taking a weighted average of those
sub-group predictions from the known joint distribution in the population from some
ground truth such as the Census. This paper has focused on the first step (“multilevel
regression”).

Ghitza and Gelman (2013) apply this method to explore the decision to turn out
to vote and party choice by age-race-income-state sub-groups in the 2004 and 2008
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American presidential elections. They note that traditional MRP includes the random
effects linearly and thus may be failing to capture important complexities or interac-
tions between demography and geography. They thus fit a highly complex model with
eighteen random effects and nearly 4,000 parameters on a dataset with around 4,000
observations. After doing so, they draw a variety of subtle and nuanced conclusions
about the behavior of particular demographic sub-groups. For example, they qualify
the conventional wisdom to show that turnout increases were concentrated amongst
non-white younger voters instead of younger white voters (Ghitza and Gelman 2013, p.
T71-772).

5.2 Estimating Complex Hierarchical Models

I begin by performing a direct comparison of Schemes I, II, and III against the gold
standard approaches applied to Ghitza and Gelman (2013). To illustrate the many
specifications available to the researcher, Table 2 shows nine possible specifications
ranging from a simple MRP model with no interactions to the preferred model in Ghitza
and Gelman (2013) (Model 9). I round y; and n; to the nearest integer to facilitate
interpretation as a standard binomial regression. The intermediate models represent
varying complexities that allow for some, but not all, interactions.

It clearly shows the scale of the difficulty for applied researchers: Fitting the pub-
lished model (Model 9) takes hours using either specification on a machine similar to
that available for many applied researchers (a Microsoft Azure instance; Ubuntu, 4
cores, 16 GB of RAM). Methods that require fitting the model repeatedly to facilitate
common tasks as bootstrapping, model comparison via cross-validation, or ensemble
analysis (Van der Laan et al. 2007, see Ornstein 2020 for an application to MRP) are
clearly prohibitively expensive for all except the simplest models using the Laplace
approximation.

Figure 1 illustrates the improvement after applying the variational algorithms to
each model in Table 2 and performing MAVB. All reported times include estimation of
the variational algorithm and drawing 4,000 samples using MAVB. Appendix E shows
the time for estimation and MAVB separately; it takes around thirty seconds for Scheme
I on the most complex model.

As shown on a linear scale, the time to estimate either the Laplace approximation
or Hamiltonian Monte Carlo dwarfs that of any of the variational schemes. The right
panel shows the results on a log-scale to allow for clearer comparisons; it shows that
Scheme I remains remarkably fast estimating even Model 9 in around one minute versus
hour(s) for either gold standard method. The performance of Schemes IT and IIT degrade
somewhat—taking around fifteen minutes to fit. This is still very reasonable, but may
still be onerous if repeated fitting is required as in cross-validation.

The quality of the approximation is also crucial to assess. As the truth is unknown,
I do this by comparing all methods against HMC as this seeks most directly to sample
the posterior.* Figure 2 begins by comparing the point estimates pooling across the

4This method is, of course, itself approximate as it may fail to accurately sample the posterior.
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Table 2: Nine Possible Models for Predicting Turnout via MRP

Model

m @ B @w 6 © O ®
State o . . ° ° . ° . °
Age o . . . . . ° . .
Eth S ° ° ° ° ° ° ° °
Inc o o o o o o o o o
Region . ) . ° .
State * Age S o o o S S
State * Eth o o S o o o
State * Inc o o o o o o
Eth * Age S S o o S S S
Eth * Inc o o o o o o o
Inc * Age o o o o o o o
Region * Age o o S o o
Region * Eth o o o o o
Region * Inc o o o o o
State * Eth * Age o o
State * Eth * Inc o o o
State * Inc * Age o
Eth * Inc * Age o S o o

Number of Parameters
74 139 198 864 945 1026 2047 2864 3885
Run Time of Model in Minutes

Laplace - 2004 0.2 0.9 2.2 5.1 13.4 27.0 38.4 50.1 81.1
Laplace - 2008 0.2 0.8 2.2 5.5 12.1 23.9 37.0 52.5 84.9
HMC - 2004 113.8 131.5 166.9 199.9 326.6 288.6 375.4 430.0 469.0
HMC - 2008 101.5 1324 1741 196.6 353.8 327.3 307.9 402.5 463.8

Note: This table summarizes nine possible models to predict voter turnout. All models include six fixed
effects: an intercept, (standardized) individual income, state-level income, state-level Republican vote
share and the interaction between individual income and the latter two variables. Ghitza and Gelman
(2013) use Model 9. The first panel indicates which random effects are included; a hollow diamond (o)
indicates that only a random intercept is used. A solid circle (e) indicates that a random intercept and a
random slope allowing for the effect of (standardized) individual income to vary by group are included.
The number of parameters is the number of fixed effects, random effects, and variance components
for the random effects. The run times are for a Laplace approximation using blme (Bates et al. 2015;
Chung et al. 2015) and HMC in STAN (via brms; Biirkner 2017). All models were run on an instance
with 16 GB of memory and 4 cores. HMC was estimated using four chains distributed in parallel.

18 models. As there are thousands of parameters to plot, I simplify the picture in
the following way; I plot the absolute magnitude of the estimates averaged across j:
oy = g%. ngI |aj | in solid circles and shade the background of the plot based on
the density of the individual |a; ¢4|. This prevents the domination of the j with smaller
numbers of groups (e.g. age, income, etc.) in the visualization. I also separately mark

Experiments suggested that setting “adapt delta” to 0.99 was required to eliminate all divergent tran-
sitions (except for one in Model 3 in 2004).
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Figure 1: Speed of Estimation
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Note: Each figure plots the run-time of each of the five methods (Laplace approximation, Hamiltonian
Monte Carlo [HMC], Schemes I-III with drawing 4,000 samples using MAVB). The reported times are
averaged across the 2004 and 2008 elections. The left figure shows the time in minutes on a linear scale;
the right figure reports the same information on a log-scale. Model 1-9 are described in Table 2. All
models are fit on a computer with 16 GB of RAM and 4 cores.

the fixed and random effects.

Consider first the Laplace approximation; it nearly exactly recovers the point estimates—
its solid points and shading lie very near to the 45-degree line. For the variational meth-
ods, Scheme I is highly correlated with the posterior (p = 0.996 for &;; p = 0.964 for
the raw |o ¢4|) although less so than the Laplace approximation. Schemes II and III
show tight coupling with the estimates from HMC and are effectively equally accurate
to the Laplace approximation. This matches the conventional wisdom that variational
methods typically well-recover the posterior means.

Figure 3 presents an analogous figure for the posterior variability, plotting the stan-
dard deviation of each parameter. It smooths across random effects in the same way as
Figure 2. In interpreting this figure, note that points in the upper left quadrant (above
the 45-degree line) indicate worrying performance as the posterior variability is below
that coming from the HMC estimates.

Again consider first the Laplace approximation; the standard deviation of its point
estimates are often tightly clustered near the 45-degree line but there are a number of
random effects that are noticeably smaller (above the 45-degree line).

The performance for the variational algorithms is rather mixed, by comparison.
Looking at Scheme I, almost all points show a too small standard deviation—with
many random effects being considerably too small. Scheme III, however, improves the
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Figure 2: Comparing Posterior Means
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Note: This figure plots the absolute value of estimated mean value from Schemes I-ITI and the Laplace
approximation on the horizontal axis against the absolute value of the posterior mean from Hamiltonian
Monte Carlo [HMC] on the vertical axis. Each parameter is plotted as a thin grey point; the average
of the values inside each random effect are shown as larger points. The axes are on a square-root scale.

situation markedly. While slightly smaller—especially for points with large standard
deviations—it tracks the 45-degree line closely and has better performance than the
Laplace approximation. As expected, Scheme II is somewhat of an intermediate case;
improving some parameters but still having significant problems.

Overall, therefore, Schemes I and II fall into the usual problem of understating
posterior variance. By contrast, Scheme III appears to do rather well and lacks the
obvious problems of lack of posterior variability versus a fully Bayesian baseline. This
corroborates results from Menictas et al. (2019) that estimating ¢(3, &) jointly performs
well for (linear) hierarchical models with J > 1.

Finally, I show how these estimates change when using MAVB. I focus on the effect
on posterior variability as the means are not materially affected by MAVB; Appendix E
shows the analogous figure. Figure 4 presents the distribution of the gap between the
variability between the HMC estimates and the other methods where negative values
indicates a smaller standard deviation for the competitor methods. Any point below
the dotted line indicates that that percentile of effects has a smaller standard deviation
than the HMC estimates. To make results interpretable, I report the percentage gap,

e.g. (sdkaplaCe — sdf™C) /sdf™C . 100 for all parameters k in (8, ). To ensure that

random effects with small g; are counted, it presents the averaged statistic across g as
in Figures 2 and 3.

The results provide clear evidence for the important role of MAVB. Considering first
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Figure 3: Comparing Posterior Variability
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Note: This figure plots the estimated standard deviation from Schemes I-I1I and the Laplace approxima-
tion on the horizontal axis against the standard deviation of the posterior distribution from Hamiltonian
Monte Carlo [HMC] on the vertical axis. Each parameter is plotted as a thin grey point; the average
of the values inside each random effect are shown as larger points.

random effects in the left panel, it is first worth noting that the Laplace approximation—
commonly used by researchers—has poor performance for a number of parameter blocks
(e.g. the lower percentiles). Scheme I shows a clear lack of variability in the posterior
estimates with all estimates being estimated at least 20% too precisely and around half
of all estimates having less than 75% of the variability estimated in the fully Bayesian
setting. After applying MAVB, the (red) solid line shows a considerable improvement al-
though still markedly below the HMC estimates and performing worse than the Laplace
approximation. Large improvements are seen for the fixed effects (3) where the esti-
mates of the variability go from extremely poor to being much closer to the Laplace
approximation which, itself, is markedly below the HMC coverage.

Scheme III is worth also considering in detail; even before applying MAVB, it has
stronger performance than the Laplace approximation in that its curve has a much less
poor “tail” (i.e. its worst blocks are around 25% too small vs around 60% for the Laplace
approximation). MAVB provides some additional gains ensuring that most parameter
blocks are only around 10% too small in terms of their variability. Scheme II is again
somewhat intermediate; after applying MAVB, it is broadly comparable to the Laplace
approximation.

To provide another interpretation of the role of MAV B, consider the accuracy mea-
sure in Section 4 that measures similarity between two distributions, averaged within
and then across across parameter blocks: The Laplace approximation performs relatively
well (90%). Scheme I performs poorly (43%) because it clearly fails to capture the pos-
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Figure 4: Improvements from MAVB
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Note: This figure plots the percentile of the gap between the standard deviations estimated
via Hamiltonian Monte Carlo [HMC] and the approximate methods. The percentage gap, i.e.

(sdi’aplace - sdEMC> /SdEMC - 100, is shown. A negative value on the vertical axis indicates that the

corresponding percentile has a smaller variance than HMC. A vertical shift upward of the line indicates
the variance of the parameters has increased. The solid markers indicate the deciles and extremes of
the distribution. The dashed line with hollow triangles represents the estimates without using MAVB.
The red line with solid circles represents the results after using MAVB.

terior variance. MAVB increases this considerably (68%) although it still falls below the
Laplace approximation. Scheme III, however, out-performs the Laplace approximation
(95%) with a slight improvement from MAVB (97%).

Appendix E provides some additional results. First, it breaks apart Figure 3 by the
type of random effect; the main implication is that the initial lack of variability from
Scheme I is most pronounced for the fixed effects and random effects with small g; (age,
ethnicity, income). The improvements for MAVB for those random effects are large and
resolves the much of the negative gap.

Second, it examines the linear predictor (i.e. xI'3 + 2l «). It shows that MAVB
has little effect, although all schemes perform well. In addition to closely estimating
the posterior mean (Scheme I has a bias of -0.002 vs HMC), the standard deviation is
also fairly close (bias of -0.013 or about -2%), especially compared to the gaps seen in
Figure 4. A conjecture would be that MAVB as implemented here has little impact on
the linear predictor as it is more about building correlations between parameter blocks,
but the “stronger” MAVB noted above might address such limitations.
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5.3 Choosing an Optimal Model

Finally, I return to the substantive analysis in Ghitza and Gelman (2013). A key question
when performing MRP is the complexity of the accompanying model. Even with the
regularization implied by the hierarchical effects, it is still possible to over-fit to the
survey sample (Goplerud et al. 2018). The reported analysis relies on Model 9 without
exploring this possibility. The computational burden needed to estimate multiple models
and thereby engage in model testing and checking is often onerous for the applied
researcher. I thus use the ability to rapidly fit variational approximations to deploy a
standard model comparison technique (cross-validation) and examine whether a model
of intermediate complexity should be preferred. Table 3 reports a number of statistics
on model fit.

Table 3: Cross-Validation to Choose Optimal Model

Models .
Method 1 9 3 4 5 6 7 8 9 Time
2004 Election
LOO 11659 11339 11296 11150 11163 11164 11155 11170 11129 2504
WAIC 11658 11336 11292 11107 11115 11113 11083 11074 10968 2503
VI-CV 28.617 28.518 28.508 28.488 28.498 28.499 28.499 28.508 28.508 21
2008 Election
LOO 11651 11270 11236 11095 11112 11118 11113 11111 11094 2463
WAIC 11651 11268 11233 11060 11073 11075 11053 11030 10957 2462
VI-CV  26.963 26.846 26.839 26.813 26.817 26.821 26.824 26.829 26.820 20

Note This table reports statistics for model fit. The first two rows for each election report fit statistics
on the model estimated via Hamiltonian Monte Carlo that approximate cross-validation; the “LOO”
information criterion and the WAIC information criterion (Gelman et al. 2014; Vehtari et al. 2017). The
third row reports the average out-of-sample deviance from a model fit using Scheme I. For all statistics,
smaller is better and the best value is bolded. The time in minutes for each row to be estimated is
shown in the final column; this includes estimation time and the time needed to estimate the relevant
fit statistic.

The first two rows (LOO and WAIC) are popular tools for deciding between non-
nested Bayesian models (Vehtari et al. 2017). Details on their exact calculation can
be found in the relevant articles (Gelman et al. 2014; Vehtari et al. 2017), but both
are designed to be approximations to cross-validation that do not require fitting the
Bayesian model repeatedly.

Fortunately, both have diagnostics to assess whether the underlying approximations
are reliable; unfortunately, the diagnostics tests fail in this setting. Almost all mod-
els report unacceptable violations of the underlying assumptions for both the LOO
and WAIC, and the associated software explicitly encourages the user to resort to
K-fold cross-validation. On the other hand, variational inference provides a fast ap-
proximate method. The final row of the table (VI-CV) reports the average deviance
(twice the negative log-likelihood) of the held-out predictions after conducting 10-fold
cross-validation where observations are allocated to each fold with equal probability
using Scheme I. Formally, if observation ¢ has a prediction p;, the individual deviance
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is =2 [y; In(p;) + (n; — yi) In(1 — p;)]. Observations with n; = 0 are excluded from the
reported average. Model 4 is also selected if Schemes II or III are used.

The results are interesting and push against the decision to use Model 9; it finds that
while Model 1 performs noticeably worse than all other models, it is not necessarily best
to use the most complex model. Indeed, an intermediate model—Model 4—performs the
best although the differences in the error are quantitatively small between Models 4 and
9.

Appendix E provides a more detailed exploration against a “Bayesian gold stan-
dard.” Using a new set of folds, it fits Models 1, 4, and 9 using ten-fold cross-validation
and performing HMC and the Laplace approximation on each fold. This is extremely
time intensive—taking around ten days to complete the whole process. It confirms that
cross-validated HMC, Laplace approximation, and Scheme I all select Model 4. The
out-of-sample predictions between Scheme I and HMC are highly correlated (0.998).
This gives some confidence that the results of the variational method can be used in
lieu of prohibitively expensive classical cross-validation. When it is too expensive to
conduct such an analysis, relying on methods such as simulation-based calibration (e.g.
Yao et al. 2018) may be a feasible way to assess whether the variational approximation
“successfully” approximated the posterior.

Returning to Table 2, the major feature that distinguishes Model 4 from less complex
models is interactions between the core random effects (age, ethnicity, income) and
state. This matches a reasonable expectation from political science that demographics
are likely to vary across state but the complex higher-order interactions between region
and three-way-interactions do not seem to add much predictive power.

These results are useful to practitioners of MRP in three ways; first, complex hier-
archical models can now be compared against other state-of-the-art machine learning
methods versus relying a very simple model (analogous to Model 1) due to computa-
tional costs (Bisbee 2019; Ornstein 2020). Thus, it is an interesting and open question
whether methods such as BART are actually superior for MRP tasks (Bisbee 2019) or
whether properly specified complex hierarchical models can be competitive. Second, it
suggests that interactions between demographics and state characteristics are important
to include although the evidence for going extremely “deep” and adding many higher-
order interactions appears more limited. Finally, even if one prefers to fit a Bayesian
model for the final regression, the ability to quickly search between models allows the
researcher to narrow down a set of plausible candidate models for final exploration and
model testing.

6 Conclusion

This paper provided a new set of variational algorithms that, leveraging Polya-Gamma
data augmentation (Polson et al. 2013), require only a mean-field assumption to estimate
a logistic hierarchical regression with an arbitrary number and size of random effects.
It provided multiple factorization assumptions; Scheme I required the independence
of the fixed effects and each block of random effects whereas Scheme III relaxed that
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assumption at the expense of increased computational cost. All methods seemed to quite
accurately capture the posterior means in even complex models. As expected in both
simulations and real data, Scheme I performed worse—especially in terms of understating
posterior variance for many random effects.

The paper also provided a generic way to improve the performance of Scheme I, and
Schemes 1T and III to a lesser extent. By leveraging the existence of a parameter expan-
sion of the underlying model either by allowing the means of the random effects to be
non-zero or by imposing some translation, one can use a marginal augmentation sam-
pler to improve the posterior approximation. This procedure (“marginally augmented
variational Bayes”; MAVB) showed promising performance when applied to Scheme I:
It increased the variance of the estimated approximations to be closer to the samples
drawn using a fully Bayesian procedure, although still remaining too small on real data.
However, given its speed even on complex models, MAVB provides a cheap way to make
Scheme I a more viable approximation to the true posterior. It is also worth noting that
Scheme III performed very well—often beating the very popular Laplace approximation
on both real and simulated data.

Future work could proceed in at least two directions. First, the algorithms here can
be naturally extended to count and multinomial outcomes providing a more unified
approach to variational estimation of non-linear hierarchical models. Extending the
model to include a weakly informative prior such as Huang and Wand (2013) is also an
important extension.

Second, the usefulness of MAVB should be explored both theoretically and in the
context of other models. As noted earlier, there is nothing about using MAVB that
is specific to logistic hierarchical models per se. Indeed, this idea of “improving” an
approximation by pushing it through a Markov transition kernel can be generalized to
a wide variety of MCMC samplers and models. It thus opens a question of which Markov
transition density to use for other models that do not admit marginal augmentation. A
reasonable conjecture is that as the mixing of the sampler improves, the transformed
sample will be closer to the true posterior.

Supplemental Materials

The supporting information contains derivations of the variational algorithm (Appendix A),
formal definitions and proofs of MAVB (Appendix B), results on accelerating CAVI
using PX-VB and joint updates of certain parameters (Appendix C), additional sim-
ulations (Appendix D), and additional analyses on Ghitza and Gelman (2013) (Ap-
pendix E).

Open-source statistical software to implement the algorithms in this paper is avail-
able on GitHub as noted in the acknowledgements. Materials to replicate the analyses in
the paper can be found at the following link: https://doi.org/10.7910/DVN/DI19IB.
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Appendix A: Derivation of Variational Algorithms

A.1 Alternative Notations: Gelman and Hill and Plate Diagram

Equation A.5 expresses the generative model in Equation 1 using the popular notation
in Gelman and Hill (2006) where c; 4; denotes the random effect j for group g of which

1 1S a member.

J
g \J . __exp(¢y) _ T b
il B, {{etj g} L1}j=1 ~ Binom(n;, p;), pi = HTP(M)’ Vi =w; B+ ; Z4,5X,9(4]
g3 ~ N(04;,35), X; ~IW(v;, ®;) V(j,g9), pB)xl

(A.5)

A plate diagram is shown below: Three arrows from zﬁ s

the right of y; denote picking out the specific random effect corresponding to observation

o 4 and m; ; intersecting to

i, i.e. aj g5 in Gelman and Hill (2006) notation.

Figure A.5: Plate Diagram of Hierarchical Model
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A.2 Derivation of Variational Algorithms

Equation A.6 provides the log-complete joint density of the model. I assume a flat prior
on (3 in all of the subsequent derivations where I'; is the multivariate Gamma function.

lnp(y,ﬂ,ﬁ,a,{Zj}le) =s'[XB+ Za] - % [Xﬁ+Za]TQ[Xﬁ+Za]+
J
(ZlanG(wi|nia ) Z

(an>ln —|—Zlnc1/J, ) — (vj +d; +1)/2In(|3]) — 1 ('I’E )

where Inc(v;, ®;) = v;/2In|®;| — (v;d)/21In(2) — In(Tq(v;/2))

9
1 _
(djg;)/2In(2m) — g;/21In(]X;]) +Z*§O‘fgzj oy | +
g=1

(A.6)

A standard result in variational inference is that, under a mean-field assumption as
imposed in Schemes I, II, and III, the optimal approximating distribution is proportional
to the exponential of the expectation of Equation A.6 over all other parameters (e.g.
Bishop 2006; Blei et al. 2017). From this, the updates can be derived as follows.’

e ¢(€2). This factorizes into N independent Polya-Gamma variables:

q(w;) ~ PG(b;, )

Under Scheme I and Scheme II, the approximating distribution is as follows.

. N _ 12 - -
bi=n;, &= \/[:cl-T,uﬁ + 2zl pa]” + @l Agz; + 2I Aoz

Under Scheme III, this depends on the covariance between o and 3. I use Ag_,
to denote the estimated covariance matrix from the variational approximation on
the stacked vector [37, a®]. This is block diagonal under Schemes I and II.

_ _ _ 12 x;
b =mn;, & = \/[CBZTMQ + 2zl fa]” + [2], 21 Ap_q [ z-l }
7

I define the stacked expectation of the Polya-Gammas into a diagonal matrix as
follows:

~ b;
Aq = diag (25 tanh(éi/2)>
7

5Note that a corresponding fully Bayesian Gibbs Sampler can be mostly read-off from these al-
gorithms if one instead samples from the noted variational distribution and plugs in the sampled
parameters instead of their expectations/variances.
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e ¢(X). This factorizes into J independent Inverse Wishart distributions whose pa-
rameters are as follows where the subscript jg denotes taking the sub vector or
matrix corresponding to a4 that is stacked into o

q(%5) ~IW (Djv i’j)

vi=vi+g;, =@+ Z ([faljg) ([Balig)” + [Aaljg.jo

g=1

~ -1
Note that Eys,)[S7'] = 7 | @]

e ¢(B,a). The optimal approximating distribution under Scheme I, II, or IIT is
multivariate normal. The exact details depend on the factorization scheme and are
each enumerated below. The stability and convergence of the algorithm improves
when all of the mean parameters (fig, ft,;) are updated jointly.

— Scheme I:
a(B) ~ N (ﬂg,fxﬁ) . Ag= (XTAQX)_1 . s = AgXT <s - AQZ[LQ)

Recall that Za = Z‘jlzl Z;a;. The approximation distributions ¢(a;) can
be updated cyclically by iterating through j € {1,---, J} with each update
as follows

~ ~ ~ -1
a(@) ~ N (o Aas) s Aoy = (2] RaZ;+ [1, @ Bys,)[57]])

fiaj=Ao;Z] | s—AaXps— Y, AoZifias
Le{1,, JI\j

Note that A, can be made by stacking Aa’j block diagonally. fi,, is formed
by stacking the i, ; vertically.

— Scheme IT: The update for ¢(3) is unchanged from Scheme I. The update for
q(a) is as follows.

q(a) ~ N (llom—&a>

- —1
Ao = (2" AaZ + blockdiag ({1, ® Eys,)[37'1}1))

fio = A ZT (s — AQXQB)
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— Scheme IIT: ¢(3, ) is no longer assumed to contain any independent com-
ponents and is updated jointly.

(B.a)~ N <[ fis } , f&g_a), Apw— ([X,Z]T]\Q [X,Z]+T)—1

o

7 [ % 0px 5>, djo; 1
05>, djg;xp blockdiag ({Ly, ® Eq(z)) (271} 1)

Bs | _ Ry X, 2]"s
B =Rixz

The ELBO can be expressed as in Equation A.7 and A.8. It can be decomposed
into two parts; the expectation of Equation A.6 and the differential entropy of the
approximating distribution. The sum of the two terms is the ELBO, i.e. ELBO =
LogComplete + Entropy.

LogComplete = — (Z ni> n(2) + 87 [ X fig + Zfia] +
i
1 _ T % - ~ 1 ~
— 5 (X + Zjia]" Ao [Xfas + Zjia] + — 5t (AaVar(XB + Za)) +

N

Z Eq(wi) [ln pr (wi \ni, 0)] +
=l 7 (A7)
~(djg7)/2n(2m) — L By, n(|Z5))] +

> ol (Byz ;) g+t (Eq(zj) =] {MLJ

g=1

J
2| 1 +

Jj=1 2

J
vi+d;+1 1 -
Zlnc(yj, ®;) - (]27])Eq(zj) [In(|%;])] - §tr (®5Eq(s,) [Ej 1})
j=1

1 -
Entropy = 3 In [27re\Aa_5\} +

bic;

T tanh(G/2) = By, [In fra(wilbi,0)] — bin [cosh(é:/2)] +

s

=1

U +dj+1 L (& -
%Eq(zj) [n [5]] + St (<1>qu(2_,) > 1])

M&

— ln C(Dj, ‘i’J) —|—
1

.
Il

(A.8)

Note that neither Equation A.8 nor Equation A.7 are individually computable in
closed form as each contains an intractable expectation of the log-density of the Polya-
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Gamma density as b; n;. Fortunately, the terms cancel and thus the ELBO is
tractable. Some final intermediate results are necessary to calculate the ELBO.

e The entropy of a Polya-Gamma random variable. The key identity follows from
Equation 5 in Polson et al. (2013).

82w

Eq(w|b,c) [— In fpg(w“), C)] = Eq(w|b,c) 7 —1In pr(w‘b, 0) —bln COSh(C/Q)

e Some expectations over an Inverse Wishart distribution. The results are stated in
Tan and Nott (2013) and follow from noting that if 3; ~ IW (v, @) then Zj_l ~
Wishart(v, ®~1). For X, ~ IW (v, ®¢) where X; is d x d:

d
Eyzp B =w[®] ™', Eyxp)n[S;)) =In|®[—> ¢((ro—k+1)/2)—dIn(2)
k=1

Appendix B: Derivation of Parameter Expansions and
MAVB

This section contains a number of results on using MAVB. First, I prove Theorem 1.
Second, I derive the implementation for a proper working prior (p; ~ N(0,7%I)) and
note that the limiting case as 72 — oo corresponds to the result in the main text.

B.1 Definitions

First, T explicitly characterize the definition of parameter expansion more generally
below.

Definition 3 (Parameter Expansion). Drawing on the results from Liu and Wu (1999)
and Van Dyk and Meng (2001), define a parameter ezpansion as follows: € is a dg-
dimensional parameter that is defined on some space Sg C R% . A parameter expansion
of the original model p(y, @) is defined via a transformation function te generating
expanded parameters X satisfying the following conditions:

e Equivalence: The transformation preserves the likelihood of the observed data

ply) = / p(y.0)d0 = / X (4.0 16)d0% V€ € S

e Reduction: t¢ is a one-to-one and differentiable function for € € S¢ where t¢(6%) =
(7]
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o Null Value: There exists some Exunl € Sg such that tey,, 0%) = 0%

The expanded model has an associated evidence lower bound conditional on & as
follows:

ELBO;((;)E) = Eyx) [Inp™ (y,0%(8)] = Eqeox) Inq(8%)]

B.2 Proof of Theorem 1

Theorem 1 can be proved directly following results from Liu and Wu (1999) and a data
processing inequality stated by a number of authors. I explicitly restate those here with
notation adapted to this paper.

Lemma 1 (Liu and Wu — Theorem 1). For a transformation function t¢(0X) satisfy-
ing the conditions in Definition 3, i.e. one-to-one and differentiable for a fixed €, the
following result holds: Assume that z ~ p(z) and & ~ po(€). Let & be a random draw
from the prior po(€) and define w = tgol (2).

If & ~ p(Elw) x p(te(w))|Je(w)|po(&), then 2z’ = tg, (w) has the same distribution
as z.

Lemma 2 (Data Processing Inequality - Various). If m(y|x) is a conditional distribution
to generate y given x, the following identity holds for any choice of w(y|x) assuming
that (i) p(x), q(x), p(y), q(y) are all proper densities and (ii) the KL-divergence between

q(x) and p(x) is finite.

KLig(e) || p()] > KLig(y) || p(y)]
where mw:/%wmmmMn mw:/%@mm@Mw

The proof of the data processing inequality has been noted by a variety of authors
(e.g. Ruiz and Titsias 2019 citing Cover and Thomas 2006). The result also appears
to follow from Gerchinovitz et al. (2020)’s result on f-divergences (Lemma 2.1). For
completeness, I show a proof via a manipulation of the KL-divergence below where
I assume that 7(y|x) is a conditional density for sampling y given z. This assumes
that p(x),p(y), q(x), q(y) are all well-defined and proper. I also assume the initial KL
divergence between p(x) and ¢(x) is finite.

KLp(@) | a@)] = [ 1o (22 ) e (A-100)
- [ [ (iortim)

p(y) {Ep(mm [ <W>” (A.10c)

()7 (ylo)dzdy (A.10Db)

’B



M. GOPLERUD 35

= Ep(y) :— In _ / mp(my)dw:] (A.10f)
= By [ n | [ LD 1) | (A.108)
O [
= By |10 (42| = K11pt0) 1 0w (A100)

With these in mind, and assuming the posterior is proper, applying the procedure in
Lemma 1 maintains the stationarity of the posterior. Thus, it satisfies the conditions in
Lemma 2 and reduces the KL divergence between the new approximation ¢(8) and the
posterior target. Noting the following identity, Theorem 1 follows as In p(y) is unchanged
by the transformation as the posterior remains invariant. Note this proof works for other
transition kernels that maintain the stationary of the true posterior.

KL[q(0) || p(8y)] = Eq(e)[In q(0)] — Eq4ee) [Inp(B|y)] = ~ELBOgye) +Inp(y) (A.11)

B.3 Applying MAVB

To apply the above results to the specific case in the paper, I assume a conditionally
conjugate prior on the expansion parameter, i.e. po(;) ~ N(O, T2Idj). Applying Def-
inition 2 of MAVB (i.e. following Theorem 1 in Liu and Wu 1999) gives the following
Algorithm 3.

The limiting case can be found as 72 — oo or by applying the logic of Scheme 2.1
in Liu and Wu (1999). A MAVB corresponding to the optimal marginal augmentation
scheme and a flat improper prior on p; is shown in the main text’s Algorithm 2. Putting
a highly diffuse working prior, e.g. 72 = 10, should lead to nearly identical results. Note
that a highly informative working prior, e.g. 72 = 1075, results in effectively no change
from applying MAVB.
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Algorithm 3 MAVB with a Proper Working Prior

Set the Number of Samples Desired: M

Estimate ¢(6) using CAVI (Algorithm 1)

Forminl,--- M
1. Draw 8™ ~ ¢(8)
2. Draw an expansion parameter from its working prior: H;m) ~ po(p;)
3. Create the transformed versions of the parameters as follows

X ( ) (m)

Qjg = + Ky

I@(m) ZM N]

4. Sample a second expansion parameter u; for each j
—1 -1 _1 g;j 1 _1
A o, = ~ N Q(Eém’) 54171 | [27) (Z a) (=) g v )
g=1
5. Adjust the draws to get the improved sample 6(m)

) el =8N S A
Jj=1
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Appendix C: Accelerating CAVI using PX-VB and Joint
Updates

This section notes two simple ways to accelerate convergence of CAVI at limited com-
putational cost. I first derive the methods and show their impact.

C.1 Derivation of Acceleration Techniques

First, I derive a new application of PX-VB (Jaakkola and Qi 2007) to hierarchical
models. The procedure is re-formulated below in the notation of this paper:

Lemma 3 (Parameter Expanded Variational Bayes - Jaakkola and Qi 2007). Given
some factorization assumption X, the following procedure converges no slower than the
associated CAVI algorithm and maintains a monotonic improvement of the ELBO.

1. Perform one step of CAVI (e.g. Algorithm 1, Steps 1-4) giving q(8) and ELBO ).

2. Noting q(0) ~% q(8%) when & = Enan and thus ELBO;{(;fN““ = ELBOyg), mazi-
mize the ELBO;((E)5 over §.

£=arg grnax ELBO;((‘;)'E = argénax Eq0) [Inp™(y,0\¢)] — Eq6)[lnq(0)]

xX-§
Note that ELBOq(a) > ELBOq(g).

3. Apply the reduction function to recover a distribution on the original, non-expanded
space. Equivalently, transform q(0) by applying a change-of-variables using té(H).

7(6)= [ te(@)a(6)a0
Note that ELBO,(s) = ELBO € and ELBO,(s) > ELBO,(g).

The intuition is very similar to why parameter-expanded EM (PX-EM; Liu et al.
1998) is guaranteed to produce weakly faster convergence. After performing one step of
CAVI (i.e. one set of updates to all approximating distributions in the original model,
e.g. Algorithm 1), one notes that the model has been estimated assuming the expansion
parameter is at its null value (& = &xun), €.g. zero in the case of a location transfor-
mation. Thus, by optimizing over &, one must weakly improve the objective and by
applying the “reduction” function, one returns to a ¢’(0) in the original variational
family with an expansion parameter that is (implicitly) &xun. Being able to “move” in
the unidentified space allows for faster convergence. As long as the optimal é # ENull
(e.g. not equal O for the location transformation), then applying PX-VB will increase
the objective function and thus ensure faster convergence by decreasing the number of
iterations required.
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The specific algorithm for Scheme I is shown in Algorithm 4. Note that the only terms
that involve p; is the prior on ajfg as shown by the expanded model (Definition 1).
Pleasingly, the closed form solution is quite simple: Center the random effects {ajyg}gj: 1
to be mean zero and adjust B correspondingly.

Algorithm 4 Accelerating CAVI for Scheme I (Mean-Expansion)

Initialize as per Algorithm 1
Fortin1,---,T
1. Perform one step of CAVTI (i.e. Updates 1-4 from Algorithm 1) to get ¢(0)

2. Maximize ELBOqX(;)'g over the expansion parameter {;}7_,.

J Tg
. 1 T
{“j}}'jzl = arg Ir}ax Ey(a)a=;) Z Z 5 (egg — 1) DIy ! (otg — 1)

i
Hjti—s j=1 Lg=1

L1
fij = = Eya,,) (@]
g; g=1

3. “Reduce” the variational parameters; note that this is guaranteed to result in
a weakly higher ELBO than ¢(0) from Step 1:

J
[aj], < (o), — B, g <— g+ Y M
Jj=1

4. Check for convergence.

A second way to accelerate the algorithm is to update certain parameter blocks
jointly. Note that Algorithm 1 implies a cyclical rotation through each random effect
j to update fin ; and Aa,j. Initial experiments showed that dramatic gains could be
achieved by updating all fi,; and fig jointly. This can be done very quickly using a
sparse Cholesky decomposition. Given those mean parameters, the Aa,j can be updated
cyclically. For models considered in this paper, this added little computational cost but
dramatically improved convergence.

C.2 Impact of Acceleration

Figure A.6 shows the major limitation of the naive CAVI in Algorithm 1. I focus on
Models 1, 4, and 9 for clarity. Even given 1,000 iterations, it still has not obtained
convergence using the threshold of the ELBO changing by less than 1078 or all pa-
rameters changing by less than 107°. Note that only the lines that are dashed reached
convergence. It compares the two strategies for accelerating discussed above: (i) PX-VB
(“Mean”, vs “None”) and (ii) jointly updating the mean parameters of ¢(3, &) (“Joint”,
vs “Naive”).
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Figure A.6: ELBO After Acceleration
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Note: The horizontal axis (number of iterations) is shown on a logged scale to illustrate the differences
more clearly. Dashed lines refer to an algorithm that converged within 1,000 iterations.

The PX-VB algorithm noted above does help performance by a faster increasing
ELBO in most models. Jointly updating the mean parameters, however, has a much
more considerable impact in all models leading to convergence in sometimes orders of
magnitude fewer iterations.

Table A.4 shows the change in the ELBO at the final iteration, i.e. the 1000th iter-
ation or convergence. We see that using PX-VB as defined above after jointly updating
the parameters does little, while there is a clear improvement from using PX-VB when
applying the naive cyclical updates in Algorithm 1. Even in the cases where PX-VB is
insufficient to allow convergence, the final change in the ELBO is around x10 smaller
(e.g. 1075 vs 107%) after 1000 iterations.

Figure A.7 explains why this is the case; it plots the trajectory of the mean of the
random effects at each iteration, i.e. 1/g; Zzil[/ja,ﬂg It shows starkly that there is
a very slow decline towards zero for the naive cyclical algorithm without parameter
expansion. By contrast, using PX-VB (Algorithm 4) or the joint updates resolves this
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Table A.4: Final Change in ELBO by Estimation Method
Estimation Method Year Model 1 Model 4 Model 9

None - Joint 2004 -7.65 -8.15 -8.07
None - Joint 2008 -7.61 -8.05 -8.09
Mean - Joint 2004 -7.65 -8.15 -8.07
Mean - Joint 2008 -7.61 -8.05 -8.09
None - Naive 2004 -4.08 -4.19 -3.74
None - Naive 2008 -3.99 -4.02 -3.72
Mean - Naive 2004 -4.61 -5.32 -5.35
Mean - Naive 2008 -4.67 -5.34 -5.25

Note: The final change in the ELBO (i.e. at convergence or the 1000th
iteration) is shown. All numbers can be interpreted as the final change
is 10%, i.e. log;y of the change in the ELBO. Estimation Method is
described in the main text and is the type of parameter expansion - the
update method for the mean parameters of ¢(3, ).

problem as they are centered at every iteration.

Figure A.7: Drift in &;
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Appendix D: Additional Simulations

D.1 Varying Magnitude of Parameters

I show the model in the main text where the standard deviation of the fixed effects (i.e.
B ~ N(O0, UI%I)) and the random effects (i.e. oy 4 ~ N(0,02)) varies. In the main text,
I only report results where o3 = 0.2 and o, = 1. The accuracy and coverage are shown
below as they are more discriminating across methods.

The story is broadly similar to the main text; in cases where o, is large, Schemes I
and II undercover. Applying MAVB improves this and puts coverage to near nominal
levels. It similarly has large benefits to accuracy. The one exception is when the distri-
bution of the true fixed effects is wide (i.e. o3 = 1). In this case, even after applying
MAVB, the coverage of the fixed effects is somewhat poor (0.90) although above ADVI.
Accuracy also remains noticeably below the Laplace approximation. In those cases (i.e.
o = 1), it is worth noting that the linear predictor has a very wide distribution (¢; has
a 5-95% interval of around -5.9 to 5.5) and the probability distribution of p; is highly
bimodal around 0 and 1. When o3 = 0.2, as in the main text, the scale is more plau-
sible for a logistic model with the 5-95% interval of the linear predictor being roughly
between -2.7 and 2.3—with a much more uniform distribution of probabilities p;. This
is roughly the scale of the linear predictors observed in bootstrapped data.

D.2 Bootstrapping Ghitza and Gelman

To address this and see how the variational schemes perform on real data, I conducted
a simulation based on Ghitza and Gelman (2013). I fit Model 1—J = 4 with random
effects for age, income, ethnicity and state—and take the parameter estimates from the
Laplace approximation as the “ground truth”. Given those estimates, I generate 100
datasets with the observed covariates from 2004 and simulate a binary outcome for
each of the 4,080 observations. Table A.5 reports three measures of the performance;
and reports the same figures as in Table 1.

The results are similar to those in the main text. Scheme I without MAVB out-
performs ADVI (Mean Field) in terms of Bias, RMSE, and coverage while having ap-
proximately the same accuracy. The comparison against ADVI (Full Rank) is more
complex; it has a noticeably higher RMSE and bias, although its accuracy is noticeably
better than Scheme 1. Applying MAVB to Scheme I results in a large improvement
in accuracy (around 10%) and makes it comparable to ADVI (Full Rank). Scheme ITI
continues to perform well having a high accuracy (94-95%) and out-performs all other
approximate methods including both versions of ADVI. Its performance is slightly im-
proved (1-2%) by MAVB.

D.3 Checking for Non-Convexities

Models estimated by variational inference have the possibility of getting stuck in local
optima. The default settings in the variational algorithms use a deterministic initializa-
tion based on an EM algorithm where the random effects are replaced by a fixed ridge
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Table A.5: Results from Bootstrapped Simulations

Bias RMSE Accuracy Coverage
FE RE FE RE FE RE
Laplace 0.004 -0.003 | 0.017 0.015 | 0.929 0.916 | 0.977 0.992
HMC 0.977 0.994
ADVI (MF) -0.005 0.002 | 0.083 0.048 | 0.631 0.829 | 0.802 0.974
ADVI (FR) -0.074 0.027 | 0.295 0.159 | 0.814 0.861 | 0.940 0.975
Scheme I 0.003 -0.003 | 0.016 0.014 | 0.659 0.836 | 0.913 0.985
Scheme 11 0.003 -0.003 | 0.016 0.013 | 0.659 0.918 | 0.912 0.991
Scheme IIT 0.003 -0.003 | 0.016 0.011 | 0.943 0.959 | 0.973 0.992
Scheme I 0.003 -0.003 | 0.016 0.015 | 0.791 0.936 | 0.932 0.991
MAVB +  Scheme II 0.002 -0.003 | 0.016 0.013 | 0.793 0.943 | 0.930 0.991
Scheme IIT 0.003 -0.003 | 0.016 0.011 | 0.951 0.965 | 0.970 0.992

Note: This reports the bias (Bias), root mean squared error (RMSE) of the estimated posterior means
against those estimated from HMC. The distance between the distributions (Accuracy) and frequentist
coverage (Coverage) are reported; see the main text for an explanation of these measures. The statistics
are disaggregated by fixed (FE) and random effects (RE). All results are created using all relevant
parameters in each simulation and then averaged across one hundred simulations. ADVI (MF) uses the
mean-field approximation; ADVI (FR) uses the full rank approximation in Kucukelbir et al. (2017).

prior. I examine a (reasonable) random initialization where (i) the variance parameters
are set to zero (i.e. Aq_g = 0) and (ii) the mean parameters are randomly sampled from
standard independent Gaussians and ®; is drawn from a standard Inverse Wishart.

Figure A.9 shows the results of the EM starting values (in red) versus 100 random
initializations using Scheme I on Models 1, 4, and 9. It is clear that all converge to
the same value of the ELBO. The maximum difference between any of the random
initializations and the EM initialized model is less than 1077,

In my other experiments, I did not observe issues with non-convexity although it
might occur in other settings or with poor starting values. Thus, it is reasonable for the
researcher to check for this in their domain-specific setting.

Appendix E: Additional Analyses for Ghitza & Gelman

Figure A.10 shows disaggregated results on the run time for the models shown in Figure 1
by breaking the time into that used for estimating the parameters via CAVI and drawing
samples and transforming them using MAVB. As noted in the main text, the time for
MAVB is the time to draw 4,000 samples to make it comparable to the output of HMC.
It shows that MAVB never consumes more than a minute or two of time—although its
cost does grow in Schemes II and III when the number of parameters is huge.

Figure A.11 shows the mean time of each stage, averaged across years, for the nine
models in the main paper. It shows that the main increase in run-time for Schemes
I, 11, and IIT comes from updating ¢(3, a)—although there is a slight increase in the
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Polya-Gamma update time. Further, it shows that the increase in the size of & imposes
noticeably more significant costs on Schemes II and III.

Figure A.12 shows the results of applying MAVB to the percentage gap on the
absolute value of the means between the approximate methods and Hamiltonian Monte
Carlo. As before, the distribution of values is over the statistic aggregated across groups.
Note that the scale is much smaller than the corresponding figure on standard deviations
in the main text (Figure 3) especially for the fixed effects.

Figure A.13 shows the average (percentage) discrepancy for each type of random
effect. As noted in the main text, it shows that there is severe underestimation of
variability for random effects with small numbers of groups—especially age, income and
ethnicity. Fortunately, applying MAVB to Scheme I corrects some of this discrepancy
giving it variability that is closer to the baseline of Hamiltonian Monte Carlo and beating
the Laplace approximation on certain blocks. Scheme III remains systematically close
to HMC and clearly out-performs the Laplace approximation on this measure.

Figure A.14 shows the correlation for the linear predictor (i.e. zI' 8 + zI' o) against
HMC—showing both mean and standard deviation. I focus only on the observations
where n; > 0 as brms does not use observations where n; = 0 in estimating the model.
For the mean, there is very close correspondence as should be expected from the tight
correspondence of the means shown elsewhere. For the standard deviation, there is more
variable performance. Scheme I has a small bias -0.013 (or 2%), a high correlation (0.96)
but clearly quite wide variability. Schemes II and IIT are much closer (0.99 correlation;
visually quite tight) if slightly systematically under-estimating variability. MAVB adds
little benefit here.

Figure A.15 shows the result of a second cross-validation where all models (HMC,
Laplace, VI [Scheme IJ) are fit on ten folds and out-of-sample predictions are generated.
It reports the deviance, as defined in the main text. All methods select Model 4 over
Model 9 although less clearly in the case of Scheme I in 2008. Note that the folds here
are separate from those in the main text; thus, it is reassuring that Model 4 is again
selected by cross-validation. “Stan (LinPred)” refers draws of the expected outcome (i.e.
the linear predictor draws pushed through the logistic link and divided by n; to get a
probability; posterior_linpred(..., transform = TRUE)). “Stan(PostPred)” refers
to averaged draws of the posterior predictive distribution (posterior_predict(...)).
The two measures are nearly identical with a mean absolute error of 0.003 on the
probability scale.

Finally, Figure A.16 shows the correlation between the out-of-sample predictions
between HMC and the Laplace and Scheme I methods. As expected from the main
results, the Laplace predictions are nearly identical to the HMC predictions while the
Scheme I are highly correlated (p = 0.998) but clearly somewhat more noisy.
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Figure A.8: Varying Size of Parameters
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Figure A.9: Examining Different Initializations
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Note: The red line indicates a model initialized via EM; the black lines indicate random initializations.

Figure A.10: Disaggregating Run Time between CAVI and MAVB
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Note: Each figure plots the run-time of Schemes I-III. The reported times are averaged across the 2004
and 2008 elections. The time is broken up into Total, CAVI (parameter estimation), and MAVB (4,000
samples plus transformation). Model 1-9 are described in Table 2. All models are fit on a computer

with 16 GB of RAM.
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Figure A.11: Time of CAVI by Scheme and Stage
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Figure A.12: Improvements from MAVB on Mean
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Figure A.13: Disaggregated Improvements from MAVB
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Figure A.14: Analysis of Linear Predictor
y
Posterior Mean Posterior Standard Deviation
, Scheme | Scheme I Scheme I T~ Scheme Il Scheme Il
x 21 %057
2 1 S| 8% g
o 2| 903 z
< 01 @ <o =
T -1 3 0.1
g g —
= 39 & 051 -
8 2 5| 504 g
8 14 = © 0.3 >
3 o 2| go2q 5
a ] CHRE I
T T T 02 04 06 02 04 06 02 04 06
140123 10123 10123 .
Posterior Mean (HMC) Posterior StdDev (HMC)
Figure A.15: “Gold Standard” CV
2004 2008
28.60 26.95
8
& 28.56 1 26.90 4
K]
3
[a)]
28.524
26.85
28.48
1 4 9 1 4 9
Model
Method: Laplace —~- Stan (LinPred) —= Stan (PostPred) \Y

Note: This plots the mean out-of-sample deviance.



50 Fast Estimation of Binomial Hierarchical Models

Figure A.16: Correlation of Out-of-Sample Predictions
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