
21 Years of Python

From Pet Project
to Programming Language of the Year

Guido van Rossum
guido@python.org

May 2011

Disclaimer

I am speaking on my own behalf.
My statements reflect my views only

and do not necessarily reflect those of Google.

Pre- and Proto-History

• Significant influences:

• Algol-60, Pascal, C

• ABC

• Modula-2+ and -3

• Lisp, Icon

• Why these?

ABC (’70s, ‘80s)

• Lambert Meertens, Leo Geurts, others

• Taught Algol to scientists (for EL X-8)

• Reaction:

– Frustrated with limitations, e.g.

• Integer range (27 bits!)

• Memory usage

• Program complexity

• Arcane I/O

ABC vs. Python

HOW TO RETURN words document:

PUT {} IN collection

FOR line IN document:

FOR word IN split line:

IF word not.in collection:

INSERT word IN collection

RETURN collection

homepages.cwi.nl/~steven/abc/

def words(document):

collection = set()

for line in document:

for word in line.split():

if word not in collection:

collection.add(word)

return collection

ABC: Stamp Out BASIC

• ABC’s target audience: professionals

– Not professional programmers

– But serious about programming needs

– E.g. scientists, lab personnel

• Easy to teach, easy to learn, easy to use

– Few constructs, combined for expressivity

– Reuse what you already know (e.g. math, English)

– One tool to handle everything

ABC: The Good Stuff

• Design iterations based on user testing

– E.g. colon before indented blocks

• Simple design: IF, WHILE, FOR, …

• Indentation for grouping (Knuth, occam)

• Tuples, lists, dictionaries (though changed)

• Immutable data types

• No limits

• The >>> prompt

ABC: Critique

• Monolithic design – not extensible

– E.g. no graphics, not easily added

• Invented non-standard terminology

– E.g. “how-to” instead of “procedure”

• ALL'CAPS keywords

• No integration with rest of system

– No file-based I/O (persistent variables instead)

ABC: The Downfall

• Too early; no community

• Intended audience didn’t have the hardware

• Those who did preferred the UNIX way

• Without Internet, hard to reach users

• Lack of extensibility

• Lack of integration

• Missed the boat on exciting new stuff

Fast-forward 4 Years…

• Amoeba distributed systems group @ CWI

• Writing apps: either C or sh

• Wanted something in between

• Management vacuum…

• Started a skunkworks language project

• Amoeba @ CWI stopped, multimedia started

• Python positioned for quick experiments

Skunkworks Design Philosophy

• Borrow ideas whenever it makes sense

• As simple as possible, no simpler (Einstein)

• Do one thing well (UNIX)

• Don’t fret about performance (fix it later)

• Go with the flow (don’t fight environment)

• Perfection is the enemy of the good

• Cutting corners is okay (get back to it later)

User-centric Design Philosophy

• Avoid platform ties, but not religiously

• Don’t bother the user with details

• Discourage but allow coding to the platform

• Offer multiple levels of extensibility

• Errors should not be fatal, if possible

• Errors should never pass silently

• Don’t blame the user for bugs in Python

Language Evolution

• Core language stabilized quickly in 1990-1991

– Earliest version did not have class statement!

• Examples of later changes:

– augmented assignment: x += 1

– comprehensions: [x**2 for x in xs if x%2 == 1]

– unicode: u"\u2043"

– new-style classes: class C(object) …

– decorators: @classmethod

Controlled Change

• Most development in standard library

• Enabling 3rd party libraries is major goal

• PEP process keeps changes in check

• BDFL role keeps PEP process in check

• Community feedback keeps BDFL in check

• python-dev@python.org: core development

• python-ideas@: speculative ideas

• python-list@: general help, discussion

Community: Early Days

• 1990 – internal at CWI

– More internal use than ABC ever had

– Internal contributors

• open design, extensibility work!

• 1991 – first release; python-list@cwi.nl

• 1994 – USENET group comp.lang.python

– “If Guido was hit by a bus?” thread

• 1994 – first workshop (NIST)

Community: Growth

• 1995-1999 – from workshops to conferences

• 1995 – Python Software Association

• 1997 – www.python.org goes online

• 1999 – Python Consortium

– Modeled after X Consortium

• 2001 – Python Software Foundation

– Modeled after Apache Software Foundation

Community: Present Day

• PSF runs largest annual Python conference

– PyCon Atlanta in 2011: 1500 attendees

– 2012-2013: Toronto; 2014-2015: Bay area

– Also sponsors regional PyCons world-wide

• EuroPython since 2002

• Many local events, user groups

– e.g. baypiggies, Chicago, Atlanta, Germany,
Singapore, Brazil, Argentina, …

Community: Web Presence

• python.org

– docs.python.org, mail.python.org,
bugs.python.org, hg.python.org,
planet.python.org, wiki.python.org

• Stackoverflow etc.

• TIOBE – consistently #6 or #7

– Tiobe Programming Language of the Year (twice!)

Python 2 vs. Python 3

• Fixing deep bugs intrinsic in the design

• Avoid two extremes:

– perpetual backwards compatibility (C++)

– rewrite from scratch (Perl 6)

• Our approach:

– evolve the implementation gradually

– some backwards incompatibilities

– separate tools to help users cope

Python 3: Status

• 2011: The Year of Python 3

• More and more 3rd party packages ported

• Python 3.2 stable and solid

• Python 2.7 is not dead yet!!!!!

Other Pythons

• Jython

• IronPython

• PyPy

Q & A

