The "Template Method" Design

il Pattern in Python
Alex Martelli

STRAKT

© 2003 AB Strakt 1

- _ This talk's audience...:

= "fair" to "excellent" grasp of Python
and OO development

= 'none" to "good" grasp of Design
Patterns in general

= wants to learn more about: DP,
Template Method, DP suitability for
Python, "DP vs language" issues

© 2003 AB Strakt 2

‘: Design Patterns

= rich, thriving subculture of the OO
development culture

= Gamma, Helms, Johnson, Vlissides:
"Design Patterns”, Addison-Wesley
1995 (Gof4)

= PLOP conferences & books

© 2003 AB Strakt 3

&= DPs and language choice [0]
:ﬁji

= ...but but but...???

= Why is there any connection?

= iISN't programming-language choice just
about implementation?

= and shouldn't all design precede all
implementation...?!

and the answer is...: *** NOIIT **x

© 2003 AB Strakt 4

a- DPs and language choice [1]

= Can nhever be independent

= design and implementation must
interact (no waterfalls!)

= €.d.: in machine-code: "if", "while",
"procedure” ... are design-patterns!

= HLLs embody these, so they are
not design-patterns in HLLs

© 2003 AB Strakt 5

a- DPs and language choice [2]

= many DPs for Java/C++ are/have
"workarounds for static typing"

= Cfr Alpert, Brown, Woolf, "The DPs
Smalltalk Companion” (AW)

= Pythonic patterns = classic ones,
minus the WfST, plus optional
exploits of Python's strengths

© 2003 AB Strakt 6

&= The "Template Method" DP
S—

= great pattern, lousy name

= 'template” is very overloaded:

*in C++, keyword used in "generic
programming"” mechanisms

» "templating" is yet another thing
(empy, preppy, YAPTU, Cheetah)

© 2003 AB Strakt 7

a _ Classic Template Method DP
—_——

= abstract base class's "organizing
method" calls "hook methods"

= concrete subclasses implement
"hook methods"

= Client code calls "organizing
method" on concrete instances

© 2003 AB Strakt 8

& Classic TM in Python
_—

class AbsBase(object):

def orgMethod(self):
self.dothis()
self.dothat()

class Concrete(AbsBase):

def dothis(self):

© 2003 AB Strakt 9

‘: Example: "pagination” of text

To "Paginate text", you must...:
= remember max number lines/page

= output each line, while tracking where
you are on the page

= just before the first line in each page,
emit a page-header

= just after the last line in each page,
emit a page-rfooter

© 2003 AB Strakt 10

‘: EX: pager abstract class [0]

e ST

The abstract-pager will thus have:
= init: record max lines/page
= Organizing method: "write a line"

= hook (abstract) methods:
o emit header
o emit line
o emit footer

© 2003 AB Strakt 11

‘: EX: pager abstract class [1]

S

class AbsPager(object):

def __1nit__(self,mx=60):

self.cur = self.pg = 0
self.mx = mx

def writeline(self, l1ne):

"""organizing method"""

© 2003 AB Strakt 12

EXx: pager abstract class [2] ==

-

def writeline(self,l1ne):
1f self.cur == 0:
self. dohead(se1f Pg)
self.dowrite(line)
self.cur += 1
1f self.cur>=self.mx:
self.dofoot(self.pg)
self.cur = 0
self.pg += 1

© 2002 AB Strakt

&= Ex: concrete pager to stdout

e

class Pagerout(AbsPager):

def dowrite(self,line):
print line

def dohead(self,pg):

print 'Page %d:\n'

def dofoot(self,pg):

print '\f', # form feed

% pPg+1

© 2003 AB Strakt 14

ar EX: concrete pager w/curses

S

class Cursepager (AbsPager):
def dowrite(self,line):
w.addstr(self.cur,0,11ne)
def dohead(self,pg):
w.move(0,0); w.clrtobot()

def dofoot(self,pg):
w.getch() # wait for key

© 2003 AB Strakt 15

a~ Classic TM rationale

= 'organizing method" provides
structural logic (sequencing &c)

= "hook methods" perform actual
"elementary” actions

= often-appropriate factorization of
commonality and variation

© 2003 AB Strakt 16

a4+ The Hollywood Principle in T™M
:%
= base class calls hook methods on
self, subclasses supply them

= it's "The Hollywood Principle":
 "don't call us, we'll call you!"

= focus on objects' responsibilities
and collaborations

© 2003 AB Strakt 17

a~ A useful naming convention

= identify "hook methods" by starting
their names with 'do’

= avoid names starting with 'do’ for
other identifiers

= Usual choices remain: dothis vs
doThis vs do_this

© 2003 AB Strakt 18

&= A choice for hook methods [0]

class AbsBase(object):
def dothis(self):
provide a default
pass # often a no-operation
def dothat(self):
force subclass to supply
raise NotImplementedError

© 2003 AB Strakt 19

A A choice for hook methods [1]

= can force concrete classes to
provide hook methods ("purer"):
o classically: "pure virtual"/abstract

» Python: do not provide in base class
(raises AttributeError) or

sraise NotImplementedError

© 2003 AB Strakt 20

a A choice for hook methods [2]

= can provide handy defaults in
abstract base (often handier):

* may avoid some code duplication
» often most useful is "no-op"

o subclasses may still override (&
maybe "extend") base version

= can do some of both, too

© 2003 AB Strakt 21

ar- Pydiom: "data overriding"
S
class AbsPager(object):
mx = 60
def __1nit__(self):
self.cur = self.pg =0
class Cursepager(AbsPager):
mx = 24
#just access as self.mx...!

© 2003 AB Strakt 22

a- d.0." obviates accessors

o

class AbsPager(object):
def getMx(self): return 60

class Cursepager(AbsPager):
def getMx(self): return 24

needs self.getMx() call

© 2003 AB Strakt 23

a~ d.0." is easy to individualize

I

1.e. easy to make per-instance
class AbspPager(object):
mx = 60
def __1nit__(self, mx=0):
self.cur = self.pg = 0
self.mx = mx or self.mx

© 2003 AB Strakt 24

a When you write up a DP...:

...you provide several components.
= hame, context, problem, ...

= forces, solution, (examples), ...

= results, (rationale), related DPs, ...

= Known uses: DPs are discovered,
not invented!

© 2003 AB Strakt 25

&~ The Template Method DP...
S

= emerges naturally in refactoring

» much refactoring is "removal of
duplication”

»the TM DP lets you remove structural
duplication
= guideline: don't write @ TM unless
you're removing duplication

© 2003 AB Strakt 26

a4~ KU: cmd.Cmd.cmdloop (simpl.)

def cmdloop(self):

self.preloop()
while True:

s = self.doinput()

s = self.precmd(s)

f = self.docmd(s)

f = self.postcmd(f,s)

1f f: break
self.postloop()

© 2003 AB Strakt 27

a~ KU: asyncore.dispatcher
several template-methods e.g:
def handle_write_event(self):
1f not self.connected:
self.handle_connect()

self.connected = 1
self.handle_write()

© 2003 AB Strakt 28

- _ Variant: factor-out the hooks

= 'organizing method" in a class
= 'hook methods" in another

= KU: HTML formatter vs writer

= KU: SAX parser vs handler

= advantage: add one axis of
variability (thus, flexibility)

© 2003 AB Strakt 29

‘: Factored-out variant of TM

= Shades towards the Strategy DP

= (Pure) Strategy DP:;
» 1 abstract class per decision point
e usually independent concrete classes

= (Factored) Template Method DP:
» abstract/concrete classes grouped

© 2003 AB Strakt 30

‘: Factored-out TM in Python [1]
—_—

class AbsParser(object):
def setHandler(self,h):
self.handler = h
def orgMethod(self):
self.handler.dothis()
self.handler.dothat()

© 2003 AB Strakt 31

‘: Factored-out TM in Python [2]
=

...optional...:
class AbsHandler(object):
def dothis(self):
pass # or: raise NIE

def dothat(self):
pass # or: raise NIE

© 2003 AB Strakt 32

a4+ Factored-out TM Python notes

= inheritance becomes optional
= SO does existence of AbsHandler

= "organizing" flow doesn't have to
be inside a method...

= merges into Python's intrinsic
"signature-based polymorphism”

© 2003 AB Strakt 33

‘: Pydiom: TM+introspection

= abstract base class can snoop into
descendants at runtime

= find out what hook methods they
have (naming conventions)

= dispatch appropriately (including
"catch-all" / "error-handling")

© 2003 AB Strakt 34

a- KU: cmd.Cmd.onecmd (simpl.)

o

def docmd(self,cmd,a):

try:
fn=getattr(self, "do_"+cmd)
except AttributeError:
return self.default(cmd,a)
return fn(a)

© 2003 AB Strakt 35

‘: KU: sgmillib ... (sample)

def finish_starttag(self,tag,ats):
try:
meth=getattr(self, 'start_'+tag)
except AttributeError:
LL snip snip 1]
return O
else:
self.tagstack.append(tag)
self.handle_starttag(tag,meth,ats)
return 1

© 2003 AB Strakt 36

‘: Multiple TM variants weaved

= plain + factored + introspective

= multiple axes to carefully separate
multiple variabilities

= Template Method DP equivalent of
JS Bach's Kunst der Fuge's Fuga a
lre soggetti ... ;-)

but then, @/l art aspires to the condition of music

© 2003 AB Strakt 37

‘: KU: unittest ... (simpl.)

class TestCase:

def __call__(self,result=None):
method=getattr(self,self.[...])
try: self.setup()
except: result.addeError([...])
try: method()
except self.failException, e:...
try: self.tearbDown()
except: result.addeError([...])

. result.addSuccess([...])

© 2003 AB Strakt 38

	The "Template Method" Design Pattern in Python
	This talk's audience...:
	Design Patterns
	DPs and language choice [0]
	DPs and language choice [1]
	DPs and language choice [2]
	The "Template Method" DP
	Classic Template Method DP
	Classic TM in Python
	Example: "pagination" of text
	Ex: pager abstract class [0]
	Ex: pager abstract class [1]
	Ex: concrete pager to stdout
	Ex: concrete pager w/curses
	Classic TM rationale
	The Hollywood Principle in TM
	A useful naming convention
	A choice for hook methods [0]
	A choice for hook methods [1]
	A choice for hook methods [2]
	Pydiom: "data overriding"
	"d.o." obviates accessors
	"d.o." is easy to individualize
	When you write up a DP...:
	The Template Method DP...
	KU: cmd.Cmd.cmdloop (simpl.)
	KU: asyncore.dispatcher
	Variant: factor-out the hooks
	Factored-out variant of TM
	Factored-out TM in Python [1]
	Factored-out TM in Python [2]
	Factored-out TM Python notes
	Pydiom: TM+introspection
	KU: cmd.Cmd.onecmd (simpl.)
	KU: sgmllib ... (sample)
	Multiple TM variants weaved
	KU: unittest ... (simpl.)

