
Stagefright: Scary Code
in the Heart of Android
Researching Android Multimedia
Framework Security

Joshua "jduck" Drake
August 5th 2015
Black Hat USA

Agenda
Introduction
System Architecture
Attack Surface
Attack Vectors
Vulnerability Discovery / Issues Found
Exploitability / Mitigations
Disclosure
Conclusions

Introduction

About the presenter and this research

About Joshua J. Drake aka jduck
Focused on vulnerability research and exploit development
for the past 16 years

Current Affiliations:

Zimperium's VP of Platform Research and Exploitation
Lead Author of Android Hacker's Handbook
Founder of the #droidsec research group

Previous Affiliations:

Accuvant Labs (now Optiv), Rapid7's Metasploit,
VeriSign's iDefense Labs

Motivations
1. Improve the overall state of mobile security

1. Discover and eliminate critical vulnerabilities
2. Spur mobile software update improvements

2. Increase visibility of risky code in Android
3. Put the Droid Army to good use!

Special thanks go to Amir Etemadieh of Optiv / Exploiteers
for his help with this research.

Sponsors
This work was sponsored by Accuvant Labs (now Optiv) with
continuing support from Zimperium.

 &

Additional thanks to Collin Mulliner and Mathew Solnik!

What is Stagefright?
Android's Multimedia Framework library

written primarily in C++
Handles all video and audio files
Provides playback facilities - e.g. {Nu,Awesome}Player
Extracts metadata for the Gallery, etc.

Brief History
Android launched with an engine called OpenCORE
Added to AOSP during Android Eclair (2.0) dev
Optionally used in Android Froyo (2.2)

Both devices I have on 2.2 have it enabled
Set as the default engine in Gingerbread (2.3) and later

It's also used in Firefox, Firefox OS, etc.
first shipped in Firefox version 17
Used on Mac OS X, Windows, and Android
NOT used on Linux (uses gstreamer)

Why Stagefright?
1. Exposed via multiple attack vectors

some of which require no user interaction
2. Binary file format parsers are often vulnerable

Especially those written in native code
3. Various public mentions of instability (crashes)

/r/Android, AOSP bug tracker, googling for
"mediaserver crash", etc.

4. Related publications about fuzzing the code

Related Work I
 ()Fuzzing the Media Framework in Android Slides

by Alexandru Blanda and his team from Intel

They released their tools! See:
Interesting results!

tons of things reported
7 accepted as security issues
3 fixed in AOSP

CVE-2014-7915, CVE-2014-7916, CVE-2014-7917

MFFA

MORE ON THESE LATER ;-)

http://elcabs2015.sched.org/event/dac435c46b36746bebed29a3f2da0cd8?iframe=yes&w=i:100;&sidebar=yes&bg=no#?iframe=yes&w=i:100;&sidebar=yes&bg=no
http://events.linuxfoundation.org/sites/events/files/slides/ABS2015.pdf
https://github.com/fuzzing/MFFA

Related Work II
On Designing an Efficient Distributed Black-Box Fuzzing
System for Mobile Devices

by Wang Hao Lee, Murali Srirangam Ramanujam, and S.P.T.
Krishnan of Singapore's Institute for Infocomm Research

Focused on tooling more than bugs
Not focused on Android only
Found several bugs, but analysis seems lacking/incorrect
Unclear if any issues were fixed as a result

http://dl.acm.org/citation.cfm?id=2714607&dl=ACM&coll=DL&CFID=527134869&CFTOKEN=38465324

Related work
Pulling a John Connor: Defeating Android

by Charlie Miller at Shmoocon 2009

Discusses fuzzing a media player
got crashes in mediaserver

Focused on opencore, not Stagefright
Focused on pre-release G1
Really old, research done in 2008

However, due to apparent lack of proactive Android security
research it seems relevant still.

http://www.openrce.org/repositories/users/camill8/shmoocon09.ppt

About this research
Stagefright is big and supports a wide variety of multimedia
file formats.

Rather than dividing my focus among multiple formats, I
focused on MPEG4.

This allowed me to be more thorough in eliminating issues.

As such, the rest of this presentation will be somewhat
specific to Stagefright's MPEG4 processing.

System Architecture

Processes, privileges, etc.

Android Architecture

Picture from in the Android Developer documentationAndroid Interfaces

Android is very modular
Things run in separate
processes
Lots of inter-process
communications

"Sandbox" relies on modified
scheme based on Linux users
and groups
libstagefright executes inside
"MEDIA SERVER"

https://source.android.com/devices/index.html

Process Architecture
The mediaserver process runs in the background:
media 181 1 120180 10676 [...] S /system/bin/mediaserver

It's a native service that's started at boot from /init.rc:
service media /system/bin/mediaserver
 class main
 [...]

As such, the process automatically restarts when it crashes.

Process Privileges (Nexus 5)
The last part of the service definition in /init.rc shows the
privileges that the service runs with:
service media /system/bin/mediaserver
 class main
 user media
 group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc mediadrm

WHOA! This service is very PRIVILEGED!

Android apps CANNOT request/receive permissions like
audio, camera, drmrpc, and mediadrm

But there's more...

mediaserver Privilege Survey
A Droid Army provides quick and valuable survey results!!

I surveyed 51 devices. The breakdown by OEM was:
Count $(BRAND)
====== ====================
17 Nexus/Google
13 Motorola
9 Samsung
6 HTC
3 LG
1 Sony
1 Amazon
1 ASUS
1 Facebook
1 OnePlus/Cyanogen
1 SilentCircle/SGP

Let's look at accessible groups, sorted by # of devices...

Privilege Survey Results I
CNT GROUP PURPOSE
51 3003(inet) /* can create AF_INET and AF_INET6 sockets */
51 3002(net_bt) /* bluetooth: create sco, rfcomm or l2cap sockets */
51 3001(net_bt_admin) /* bluetooth: create any socket */
51 1006(camera) /* camera devices */
51 1005(audio) /* audio devices */
[...]

All devices had this level of access, with which you can:

Monitor, record, and playback audio
Access camera devices
Connect to hosts on the Internet
Access and configure bluetooth

Ouch! This allows an attacker to spy on you already.

Privilege Survey Results II
Continuing down the line, things get interesting...
CNT GROUP PURPOSE
33 3007(net_bw_acct) /* change bandwidth statistics accounting */
33 1026(drmrpc) /* group for drm rpc */
27 1000(system) /* system server */
20 1003(graphics) /* graphics devices */
19 1031(mediadrm) /* MediaDrm plugins */
18 3004(net_raw) /* can create raw INET sockets */
11 3009(qcom_diag) /* <jduck> baseband debugging? */
9 1028(sdcard_r) /* external storage read access */
8 1023(media_rw) /* internal media storage write access */
8 1004(input) /* input devices */
7 1015(sdcard_rw) /* external storage write access */
4 2000(shell) /* adb and debug shell user */
4 1001(radio) /* telephony subsystem, RIL */

and more!

Architecture Recap
To recap the important bits...

1. libstagefright processes media inside mediaserver
2. The service runs privileged, potentially even as "system"
3. mediaserver automatically restarts

The additional attack surface exposed to a compromised
mediaserver is large — even compared to ADB. Beware.

Attack Surface

Where is the code under attack?

Locating the Attack Surface

NOTE: Released tools include some helper scripts.

Once you have your environment set up, finding the MPEG4
attack surface is relative straight-forward.

1. Attach debugger to mediaserver process
2. Place breakpoint on open
3. Open an MPEG4 video file
4. Sift through breakpoint hits until r0 points at your file
5. Look at the backtrace
6. Dig in and read the surrounding code

What do you find?
[*] open("/sdcard/Music/playing.mp4",...) called from:
#0 open (pathname=<value optimized out>, flags=0) at bionic/libc/unistd/open.c:38
#1 0x40b345e8 in FileSource (this=0x479038, filename=0x478d08 "/sdcard/Music/playing.mp4") at frameworks/base/media/libstagefright/FileSource.cpp:37
#2 0x40b332fe in android::DataSource::CreateFromURI (uri=0x478d08 "/sdcard/Music/playing.mp4", headers=0x4780c0) at frameworks/base/media/libstagefright/DataSource.cpp:139
#3 0x40b2ef50 in android::AwesomePlayer::finishSetDataSource_l (this=0x478058)
 at frameworks/base/media/libstagefright/AwesomePlayer.cpp:2085
#4 0x40b2efb2 in android::AwesomePlayer::onPrepareAsyncEvent (this=<value optimized out>) at frameworks/base/media/libstagefright/AwesomePlayer.cpp:2168
#5 0x40b2c990 in android::AwesomeEvent::fire (this=<value optimized out>, queue=0x20000) at frameworks/base/media/libstagefright/AwesomePlayer.cpp:81
#6 0x40b50c28 in android::TimedEventQueue::threadEntry (this=0x47806c) at frameworks/base/media/libstagefright/TimedEventQueue.cpp:299
#7 0x40b50c6c in android::TimedEventQueue::ThreadWrapper (me=0x47806c) at frameworks/base/media/libstagefright/TimedEventQueue.cpp:214
#8 0x400e8c50 in __thread_entry (func=0x40b50c59 <android::TimedEventQueue::ThreadWrapper(void*)>, arg=0x47806c, tls=<value optimized out>) at bionic/libc/bionic/pthread.c:217
#9 0x400e87a4 in pthread_create (thread_out=<value optimized out>, attr=0xbe81ea28, start_routine=0x40b50c59 <android::TimedEventQueue::ThreadWrapper(void*)>, arg=0x47806c) at bionic/libc/bionic/pthread.c:357

frame #3 - frameworks/base /
media/libstagefright/AwesomePlayer.cpp:2085

(note: moved to frameworks/av in Android >= 4.1)

AwesomePlayer.cpp:2085
2085 dataSource = DataSource::CreateFromURI(mUri.string(), &mUriHeaders);
2086 }
....
2092 sp<MediaExtractor> extractor;
2093
2094 if (isWidevineStreaming) {
....
2109 } else {
2110 extractor = MediaExtractor::Create(
2111 dataSource, sniffedMIME.empty() ? NULL : sniffedMIME.c_str());
....
2127 status_t err = setDataSource_l(extractor);

Okay, so it calls setDataSource_l(sp<MediaExtractor>)...

Let's look at that.

AwesomePlayer::setDataSource_l
 349 status_t AwesomePlayer::setDataSource_l(const sp &extractor) {
 ...
 356 for (size_t i = 0; i < extractor->countTracks(); ++i) {

... calls MPEG4Extractor::countTracks:
 305 size_t MPEG4Extractor::countTracks() {
 ...
 307 if ((err = readMetaData()) != OK) {

In turn, that calls readMetaData. Let's check that out...
 365 status_t MPEG4Extractor::readMetaData() {
 ...
 372 while ((err = parseChunk(&offset, 0)) == OK) {
 373 }

readMetaData calls parseChunk. Let's look at that!

MPEG4Extractor::parseChunk
This function is the primary attack surface for MPEG4
parsing!

primary dispatch for handling MP4 atoms / FourCC values
between 80 and 140 depend on Android version

it's implemented using recurison
 671 switch(chunk_type) {
 672 case FOURCC('m', 'o', 'o', 'v'):
 673 case FOURCC('t', 'r', 'a', 'k'):
 ...
 724 while (*offset < stop_offset) {
 725 status_t err = parseChunk(offset, depth + 1);

More specific examples will follow in later sections.

Attack Vectors

What would an attack look like?

Vector Enumeration Methodology
Ultimate goal: Find out how to get attacker controlled
media files processed by this code.

Try all possible ways to send yourself a media file!
Depends on knowledge of "all possible ways"

A Thorough Methodology:

1. Find all calls into this function.
2. Ask yourself "Can an attacker's data reach here?"
3. Repeat until all vectors are identified.

Modularity Complicates Matters
Executing the thorough methodology is challenging due to:

A mix of Java and native code
Object-oriented (OO) code
Must be mindful of member objects & instantiation
Code paths traverse a variety of Service and
BroadcastReceiver end points
Some vectors might be closed source (e.g. Google apps)

IMHO this is still the best way to learn "all possible ways".

Vector I: Media in the Browser
The <video> tag is new in HTML5! Let's try it...

...Yep, it works!

Vector II: Browser Auto-download
Also, servers can force you to download instead!

Vector II: Browser Auto-download II

See also: http://developer.android.com/reference/android/app/DownloadManager.html

Downloads happen in the background.
No prompting to the user.

No option to prompt either :-/
FEATURE REQUEST!

This behavior has been abused in the past...
Thomas Cannon's "Data Stealing"
Not just on Android! "Carpet Bombing" attack

Testing shows it processes media when it's finished
downloading!

http://developer.android.com/reference/android/app/DownloadManager.html

Enter the Media Scanner

NOTE: For more details, see the bonus slides or whitepaper (in progress).

After a long journey looking into browser download
processing, I discovered the MediaScanner, which:

Extracts metadata for the Gallery and so on.
Is invoked in various ways, including:

Directly, via MediaScannerConnection
MEDIA_{MOUNTED,SCANNER_SCAN_FILE} Intents
Classes implementing MediaScannerConnectionClient

With our new understanding, we continue our methodology
and track backwards to untrusted data sources. We find...

Tons of Attack Vectors!
We find a multitude of attack vectors that use Stagefright!

In summary, any way your device touches media:

Mobile Network - Mms
Client Side - Browser, Downloads, Email
Physically Adjacent - Nfc, Bluetooth, VCards
Physical - SD Cards, USB OTG Drives, USB MTP/PTP
Misc - Gallery

Total attack vectors: 11+

Do you use any of these to talk to untrusted people?

The Scariest Part - MMS
Media is AUTOMATICALLY processed ON MMS RECEIPT.
BEFORE creating a notification!

Actually, while creating the notification

Exploiting a vulnerability in Stagefright via MMS could allow
SILENT, REMOTE, PRIVILEGED code execution.

The attacker's payload simply needs to prevent the
notification.

Who has your phone number?

Where does this work?

Doesn't seem to work in com.android.mms (AOSP:packages/apps/Mms)

Works in latest version of Hangouts
The default MMS application in 5.0+
Google removed com.android.mms

Works in latest version of Messenger
Popular alternative to Hangouts
Now com.google.android.apps.messaging

TURN AUTO-RETRIEVE OFF!
Not a silver bullet, 10+ vectors left...

Triggers Virally
The vulnerable code is invoked many times in Android.

Basically any time a thumbnail is rendered or metadata is
needed (e.g. dimensions)

Rotating the screen
Starting the Messaging app (conversation list)
Viewing the Gallery
Sharing malicious media
and so on...

Any Other Vectors?
There could be additional vectors! Consider:

Downstream (OEM/Carrier) modifications
Third-party apps

Untested ideas:

Instant messaging?
Social networks?
QR Codes?

Please reach out if you have ideas or discover additional
vectors!

Vulnerability Discovery

Are there security bugs in Stagefright?

Discovery Methodology
This is the basic methodology I used for the first pass:

1. Write fuzzer (basic dumb fuzzer in this case)
2. Run the fuzzer
3. While fuzzer runs, read code
4. When fuzzer finds crashes, read surrounding code
5. Repeat until brain melted

First Round Specifics
Again, the decision was to focus on MP4 video.

Seemed complicated enough...
Had the most lines of code
Same code handles other formats (3GP, M4A)

Corpus

What code your inputs exercise matters
Didn't even bother with building an optimized set
Started with the smallest file possible

 created meow.3gp - 25KB@Zenofex

https://twitter.com/Zenofex

First Round Results
The fuzzer ran on live Android devices for ~1 week.

Results: ~6200 crashes
Most crashes not interesting
Post-analysis results: ~20 unique bugs

None of these were very interesting

However, code review during analysis was fruitful!

Found ~5 memory corruptions nearby during code review
These became CVE-2015-1538 and CVE-2015-1539

Enter American Fuzzy Lop

See http://lcamtuf.coredump.cx/afl/

AFL is a coverage-guided fuzzer that gravitates towards new
code paths.

Useful for generating a corpus
Able to find buggy code paths quickly

Second round methodology:

Develop harness to test Stagefright
Run AFL on beefy hardware
Periodically triage, analyze, and restart the fuzzer
Catalog and fix bugs as they are discovered

http://lcamtuf.coredump.cx/afl/

Second Round Results
I ran the second round of testing for about 3 weeks.

Used both default and dictionary based modes
Tried with and without ASAN
~3200 tests per second
Total CPU hours was over 6 months

Five more critical issues discovered!

Plenty more less-severe crashing bugs too..

The code fuzzed clean at the end.

Bug Summary
CVE-2015-1538 #1 -- MP4 'stsc' Integer Overflow
CVE-2015-1538 #2 -- MP4 'ctts' Integer Overflow
CVE-2015-1538 #3 -- MP4 'stts' Integer Overflow
CVE-2015-1538 #4 -- MP4 'stss' Integer Overflow
CVE-2015-1539 ------ MP4 'esds' Integer Underflow
CVE-2015-3824 ------ MP4 'tx3g' Integer Overflow
CVE-2015-3826 ------ MP4 3GPP Buffer Overread
CVE-2015-3827 ------ MP4 'covr' Integer Underflow
CVE-2015-3828 ------ MP4 3GPP Integer Underflow
CVE-2015-3829 ------ MP4 'covr' Integer Overflow
..and a whole slew of stability fixes

Details for a FAIL

Full vulnerability analysis details will be published in the whitepaper (in progress)

Due to time constraints, let's look at a few interrelated
issues found in round 1.

Fixes pushed to AOSP in Lollipop release:
Date: Mon Jul 28 09:54:57 2014 -0700

 SampleTable: check integer overflow during table alloc

 Bug: 15328708
 Bug: 15342615
 Bug: 15342751

Three Related Issues
All three are very similar, so let's look at just one:
@@ -330,6 +330,10 @@ status_t SampleTable::setTimeToSampleParams(
 }

 mTimeToSampleCount = U32_AT(&header[4]);
+ uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
+ if (allocSize > SIZE_MAX) {
+ return ERROR_OUT_OF_RANGE;
+ }
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];

 size_t size = sizeof(uint32_t) * mTimeToSampleCount * 2;

Okay. So if the 64-bit result is bigger than 2^32, we return
ERROR_OUT_OF_RANGE.

Right?

Embarrassing, but Educational

"Catching Integer Overflows in C", Felix von Leitner, http://www.fefe.de/intof.html

SORT OF. So what REALLY happens?

In C, on the other hand, if you multiply two 32-bit
integers, you get a 32-bit integer again, losing the
upper 32 bits of the result. ... which is a typical mistake
of inexperienced C hackers.

All three multiplicands are uint32_t
No integer promotion so upper 32-bits are lost
No integer overflow is ever detected.
The original vulnerability remained. OOPS.

http://www.fefe.de/intof.html

Exploitability

Can these issues be exploited?

Exploitability Analysis
Many of the vulnerabilities result in memory corruption in
heap memory.

These types of issues have been proven exploitable
numerous times in the past.

Android's mitigations come into play.

Diversity in the Android ecosystem complicates research,
but is not a barrier to exploitation.

mediaserver Recap
Some properties of mediaserver help and hurt us!

Spawning from init (a native service) means...
+ Zygote ASLR weakness does not apply
- Possible to retry an attack repeatedly/indefinitely
- Poissble to bypass ASLR through sheer bruteforce.

The process runs multiple threads
+ Less determinism in heap usage

New Mitigation in Android 5.0
The release of Android Lollipop brought more
improvements!

Heap implementation changed to jemalloc
Integer overflow mitigation in GCC 5.0

These two blocks of code are functionally equivalent.
236 mSampleToChunkEntries =
237 new SampleToChunkEntry[mNumSampleToChunkOffsets];

236 mSampleToChunkEntries =
237 malloc(mNumSampleToChunkOffets * sizeof(SampleToChunkEntry))

The Android compiler team introduced this, not Android
Security.

Mitigation Summary

* Only affects some of the vulnerabilities. It still leads to DoS.

Mitigation Applicability

SELinux N/A

Stack Cookies N/A

FORTIFY_SOURCE N/A

ASLR only Android >= 4.0

NX bypass with ROP

GCC new[] mitigation N/A*

ASLR is the ONLY challenge.

Address Space Layout Randomization
I managed to fully bypass ASLR on ICS. Partially on JB+

May also be possible on newer Android version too.

Information leakage issues
Address space is usually only 32-bits

Heap spraying
Other virtual memory tricks

Bruteforce or statistical guessing

Exploitability by Release
Android Release Exploitable?

Gingerbread YES: NO ASLR

Ice Cream Sandwich YES: WEAK ASLR

Jelly Bean YES, IN THEORY

KitKat YES, IN THEORY

Lollipop YES, IN THEORY

Exploited ICS
DEMO!

Disclosure

What about getting these issues fixed?

Disclosure process review
Reported via patches to Google

Early April - Sent first set of patches
Late April - Reported one to Mozilla
Early May - Sent second set of patches
Late April through Early June

Reported issues to Blackphone via Bugcrowd

I requested embargo from everyone.

90 days from notifying Google despite our 30 day policy.

Fixes
Everyone was great to work with!

Android accepted the patches and applied to their
internal code branches in <= 4 days.

They notified their partners, but not non-partners.
Mozilla fixed quickly and released in Firefox 38.
Blackphone rolled out the fixes in binary form.

Zimperium created the Zimperium Handset Alliance to
improve this process in the future.

Over 25 carriers, manufacturers, and vendors have
already joined!

Update Deployment
This is still ongoing.

If you get an update to your Android device soon, it is
probably the fixes.

There's a long tail to Android updates and many devices
may never get fixed :-/

This research has made a huge positive impact on Android
security already.

NEW: 30 day patch cycles for Google and Samsung
NEW: Updates possibly being created for older devices!

Conclusions

Wait, what are you trying to say?

Conclusions
Android's code base needs more attention.

Audit, fuzz, test, submit to the Android VRP
Mitigations are not a silver bullet

Especially in situations where multiple attempts are
possible

Vendors using Android need to
1. Be more proactive in finding / fixing flaws
2. Be more aggressive in deploying fixes

Thankfully, things appear to be improving! For more
information, see Adrian's talk from this morning!

Thanks for your time!
Any questions?

Prefer to ask offline? Contact me:

Joshua J. Drake
jdrake@zimperium.com
jduck @ Twitter/IRC
www.droidsec.org

http://www.droidsec.org/

the end

BONUS SLIDES!!!

These didn't make the cut

Be sure to thank me for the extra content =)

Discovering the Media Scanner

Looking into Browser download handling...

Discovering the Media Scanner
Looking at the Browser's DownloadHandler is the beginning
of a journey down the rabbit hole.
 37 /*
 38 * Handle download requests
 39 */
 40 public class DownloadHandler {
...
142 /*package */ static void onDownloadStartNoStream(Activity activity,
...
188 final DownloadManager.Request request;
189 try {
190 request = new DownloadManager.Request(uri);
...
199 // let this downloaded file be scanned by MediaScanner -
200 // so that it can show up in Gallery app, for example.
201 request.allowScanningByMediaScanner();

DownloadManager.Request.allowScanningByMediaScanner

Media Scanner II
But how does that work?!

To see, we consult DownloadManager.java in
frameworks/base/core/java/android/app:
 557 public void allowScanningByMediaScanner() {
 558 mScannable = true;
 559 }

shrug

Let's try again with mScannable...

Media Scanner III
And looking into mScannable, we find:

 345 public static class Request {
 ...
 375 private boolean mScannable = false; // THANKFULLY
 ...
 705 * @return ContentValues to be passed to DownloadProvider.insert()
 706 */
 707 ContentValues toContentValues(String packageName) {
 ...
 723 // is the file supposed to be media-scannable?
 724 values.put(Downloads.Impl.COLUMN_MEDIA_SCANNED, (mScannable) ? SCANNABLE_VALUE_YES :
 725 SCANNABLE_VALUE_NO);

Alright, so now we are going off to DownloadProvider...

Having fun yet?

MediaScanner IV
DownloadProvider is a Service that processes a queue of files
to download. The most relevant part of the code follows:
 71 public class DownloadService extends Service {
...
113 private DownloadScanner mScanner;
...
281 /**
282 * Update {@link #mDownloads} to match {@link DownloadProvider} state.
283 * Depending on current download state it may enqueue {@link DownloadThread}
284 * instances, request {@link DownloadScanner} scans, update user-visible
...
293 private boolean updateLocked() {
...
328... // Kick off download task if ready
329... final boolean activeDownload = info.startDownloadIfReady(mExecutor);
330...
331... // Kick off media scan if completed
332... final boolean activeScan = info.startScanIfReady(mScanner);

MediaScanner V
Looking closer at DownloadScanner, we see:
 41 public class DownloadScanner implements MediaScannerConnectionClient {
...
 60 public void exec(MediaScannerConnection conn) {
 61 conn.scanFile(path, mimeType);
 62 }

This sends us down another rabbit hole, to see the internals
of the MediaScanner implementation. More details on that
will be in the whitepaper.

Suffice to say that it eventually leads to
MPEG4Extractor::parseChunk.

MediaScanner VI
Stepping back, we see that another API that leads to
scanning too...

DownloadManager.addCompletedDownload (since API 12)
frameworks/base/core/java/android/app/DownloadManager.java:1199: \
 return addCompletedDownload(title, description, isMediaScannerScannable, \
 mimeType, path,
frameworks/base/core/java/android/app/DownloadManager.java-1200- \
 length, showNotification, false);

Let's look into calls to this API and see if they do or don't
scan things.

MediaScanner VII
These don't scan media:
packages/apps/Browser/src/com/android/browser/Controller.java:2118: \
 manager.addCompletedDownload(target.getName(),
packages/apps/Browser/src/com/android/browser/Controller.java-2119- \
 mActivity.getTitle().toString(), false,

packages/apps/Email/emailcommon/src/com/android/emailcommon/utility/AttachmentUtilities.java:414: \
 long id = dm.addCompletedDownload(attachment.mFileName, attachment
packages/apps/Email/emailcommon/src/com/android/emailcommon/utility/AttachmentUtilities.java-415- \
 false /* do not use media scanner */,

packages/providers/DownloadProvider/src/com/android/providers/downloads/DownloadStorageProvider.java:135: \
104 @Override
105 public String createDocument(String docId, String mimeType, String displayName)
...
 return Long.toString(mDm.addCompletedDownload(
packages/providers/DownloadProvider/src/com/android/providers/downloads/DownloadStorageProvider.java-136- \
 file.getName(), file.getName(), false, mimeType, file.

MediaScanner IV
These DO use the media scanner:
packages/apps/UnifiedEmail/src/com/android/mail/providers/EmlAttachmentProvider.java:329: \
 mDownloadManager.addCompletedDownload(attachment.getName(),
packages/apps/UnifiedEmail/src/com/android/mail/providers/EmlAttachmentProvider.java-330- \
 description, true, attachment.getContentType(),

After reading some documentation and searching around
for more details about the MediaScanner, we see that it can
also be triggered via several Intents.

android.intent.action.MEDIA_MOUNTED
android.intent.action.MEDIA_SCANNER_SCAN_FILE

Vectors into the Media Scanner

A MediaScanner Darkly!

Vectors into the Media Scanner I
Users of MediaScannerConnection include:

The Android Compatability Test Suite (CTS)
The ExternalStorage sample in ApiDemos
The Roboelectric test suite
The CameraBrowser's ObjectViewer
CarouselViewUtilities (??)
BluetoothOppService
VCardService
Email app AttachmentUtilities
The Gallery (of course) IngestService
....and....

Vectors into the Media Scanner II
Users of MediaScannerConnection also include:

Nfc app HandoverTransfer
CalendarProvider's CalendarDebugActivity
DownloadProvider's DownloadScanner

used by the Browser, via DownloadManager
MediaProvider

Implements Intents for scanning
TestingCamera from the PDK

It's important to note that some vectors don't process
untrusted data. (i.e. the Camera and test suites)

Vectors into the Media Scanner III
Locations that invoke via the MEDIA_MOUNTED Intent
include:

The MediaScannerActivity sample
MountService (via vold)
Music app TestSongs

This includes when SD cards are inserted as well as when
dealing with MTP connections.

Vectors into the Media Scanner IV
Locations that invoke via the MEDIA_SCANNER_SCAN_FILE
Intent include:

Taking pictures from within the Browser (SelectFileDialog
or UploadHandler)
The screenrecord command
"photobasics"
Mms app ComposeMessageActivity

Ringtones and Media via copyPart
SoundRecorder app SoundRecorder
UnifiedEmail app EmlAttachmentPRovider
VideoEditor app ApiService

Vectors into the Media Scanner V
Classes that implement the MediaScannerConnectionClient
interface include:

The Android CTS
CameraBrowser.ObjectViewer
Bluetooth app BluetoothOppService
Contacts app VCardService
Gallary2 app
DownloadProvider.DownloadScanner
MediaProvider

h0dg3 p0dg3

A bunch of random nixed slides

Caveats to Attacking via MTP/PTP
MTP/PTP requires a USB connection
It's enabled by default on Nexus devices since 4.0

Can be disabled (mine is)
Can't disable it on some devices (i.e. SGS5) :-(

Requires an unlocked while USB is plugged in!
Doesn't apply to "None" or "Swipe" screen locking

Sending MMS w/o Carriers I
need to broadcast WAP_PUSH_RECEIVED

can't do it via "am broadcast"
it doesn't support byte[] Intent extras

inject a re-broadcast receiver (MmsProxy) into
com.android.phone with adbi/ddi

MMSC connections forced over mobile network
netd adds a route temporarily
created a patch to netd to avoid that

Sending MMS w/o Carriers II
Modify APN settings

remove "mmsc" from existing APN
create new APN with:

LAN server for MMSC
"mmsc" in APN type

host your own MMSC

Now you're ready to test!

the real end. really.

